某岛

… : "…アッカリ~ン . .. . " .. .
November 18, 2012

日常模板 Manual Ver-0.1

。。
。。“ Micro Mezzo Macro Flation — Overheated Economy ”。。(以下简称 “ 过热经济 ” 。。。。
。是我现在各大 OJ 交题是粘的头文件。。。。最早大概是我去年看到了 ACRush 的头文件以后大为惊讶。。参考以后逐渐修订形成的。。

。最近发现居然有除我之外的同学也在使用这份模板。。(。但是使用的是几个月前的过时版本。。。。。
。。。。另外考虑这份模板个人向严重。。这里做一点记录。。

Name: Micro Mezzo Macro Flation — Overheated Economy
Usage: Put it before main function .. .
Tags: 常用语块、变量隐藏、局部 define、可组装。。。

Module: 0. 日常模块 1. 位运算模块(BO) 2. 数论模块(NT) 9. 计算几何模块(CG) .. .
。。 。A. 随机发生器 (RNG) B. 时钟模块(CLOCK) 。。。

。。完整版。( ‘ MMMFOE ., Ver 0.1 。。。。

头文件、循环与常用语句。。

#define LOCAL

/** ` Micro Mezzo Macro Flation -- Overheated Economy ., Ver 0.1 **/

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>

。。。头文件部分。。唯一在这一节说一下的是条件编译。。。网上搜一下什么 #define 用法集锦就什么都出来了啦。。
#define用法集锦
C++ Language Tutorial —— Preprocessor directives
。现代 OJ 大多都定义了 ONLINE_JUDGE 。。。考虑到有些 OJ 没有定义这里就定义了一个 LOCAL。。
。。当然有时也用来 DEBUG 用。。另外在时钟类里面用来分别 Linux 和 Win32 。。(。。小莎现在基本给 hakanai 用了。。。。自机的话。。基本是在用实验室的 Win7。。

#define REP(i, n) for (int i=0;i<int(n);++i)
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i)
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i)
#define REP_1(i, n) for (int i=1;i<=int(n);++i)
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i)
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i)
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i)
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i)
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i)
#define REP_N(i, n) for (i=0;i<int(n);++i)
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i)
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i)
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i)
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i)
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i)
#define REP_1_N(i, n) for (i=1;i<=int(n);++i)
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i)
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i)
#define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i)
#define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i)
#define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i)
#define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i)
#define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i)
#define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i)

//#define ECH(it, A) for (typeof(A.begin()) it=A.begin(); it != A.end(); ++it)
#define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it)
#define REP_S(it, str) for (char*it=str;*it;++it) // 用于字符串的 .. .
#define REP_G(it, u) for (int it=hd[u];it;it=suc[it]) // 用于图论的 .. .
#define DO(n) for ( int ____n ## __line__ = n; ____n ## __line__ -- ; )
#define REP_2(i, j, n, m) REP(i, n) REP(j, m)
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m)
#define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l)
#define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l)
  • REP(i, n): 从 0 到 n-1 ..
  • FOR(i, a, b): 从 a 到 b-1 ..
  • DWN(i, b, a): 从 b-1 到 a .. .

下划线后面接的是开关。。。

  • _1: 表示 with 1 offset。。。(。。就是原本的 [0, n) 变成了 [1, n] 。。。
  • _C: 表示局部缓存一下(cache)。。在下标是复杂表达式 (例如 跟了一个函数 或者 sqrt 什么什么的时候经常用到。。。
  • _N: 表示不声明循环变量。。可能是前面声明过了。。或者出了循环后还要用。。

。。。DO(n) .. 类似于 Ruby 里面的 n.times 。。。属于纯粹计数循环的那种连下标都没有。。里面的 ## __line__ 表示局部变量和行号有关。。可以保证不重复。
。(但后来发现不这样写似乎也不会造成冲突。。保险起见还是加上把。。。
。。之后还有一些 REP 循环的派生。。大家自己根据字面意思 yy 吧。。。

练习:。。读入 n。。再依次读入 a 数组。。对数组的每个元素 -= 1。。

.. .
  REP_C(i, RD(n)) --RD(a[i]);
.. .
#define ALL(A) A.begin(), A.end()
#define LLA(A) A.rbegin(), A.rend()
#define CPY(A, B) memcpy(A, B, sizeof(A))
#define INS(A, P, B) A.insert(A.begin() + P, B)
#define ERS(A, P) A.erase(A.begin() + P)
#define BSC(A, X) find(ALL(A), X) // != A.end()
#define CTN(T, x) (T.find(x) != T.end())
#define SZ(A) int(A.size())
#define PB push_back
#define MP(A, B) make_pair(A, B)
#define PTT pair<T, T>
#define fi first
#define se second

#define Rush int T____; RD(T____); DO(T____)

#define Display(A, n, m) {                      \
	REP(i, n){		                            \
        REP(j, m) cout << A[i][j] << " ";       \
        cout << endl;				            \
	}						                    \
}

#define Display_1(A, n, m) {				    \
	REP_1(i, n){		                        \
        REP_1(j, m) cout << A[i][j] << " ";     \
		cout << endl;		            		\
	}						                    \
}

#pragma comment(linker, "/STACK:36777216")
//#pragma GCC optimize ("O2")
#define Ruby system("ruby main.rb")
#define Haskell system("runghc main.hs")
#define Python system("python main.py")
#define Pascal system("fpc main.pas")

。。。Display 是方便调试用的。。这里用了多行 #define。。
然后下面接了一堆方便平常调试脚本语言的 =w=。。(。。我到现在还只会用 NotePad 2 。。。。

typedef long long LL;
//typedef long double DB;
typedef double DB;
typedef unsigned UINT;
typedef unsigned long long ULL;

typedef vector<int> VI;
typedef vector<char> VC;
typedef vector<string> VS;
typedef vector<LL> VL;
typedef vector<DB> VD;
typedef set<int> SI;
typedef set<string> SS;
typedef set<LL> SL;
typedef set<DB> SD;
typedef map<int, int> MII;
typedef map<string, int> MSI;
typedef map<LL, int> MLI;
typedef map<DB, int> MDI;
typedef pair<int, int> PII;
typedef pair<int, bool> PIB;
typedef pair<LL, LL> PLL;
typedef vector<PII> VII;
typedef vector<VI> VVI;
typedef vector<VII> VVII;
template<class T> inline T& RD(T &);
template<class T> inline void OT(const T &);
inline LL RD(){LL x; return RD(x);}
inline char& RC(char &c){scanf(" %c", &c); return c;}
inline char RC(){char c; return RC(c);}
//inline char& RC(char &c){c = getchar(); return c;}
//inline char RC(){return getchar();}
inline DB& RF(DB &x){scanf("%lf", &x); return x;}
inline DB RF(){DB x; return RF(x);}
inline char* RS(char *s){scanf("%s", s); return s;}

。。注意最最常用的 RD(x) 和 OT(x) 。。的接口放在最下面了。。。。(因为经常要根据不同的题目。。微调一下。。。

template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;}
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;}
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;}
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;}
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);}
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);}
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);}
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}
inline char& RC(char &a, char &b){RC(a), RC(b); return a;}
inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;}
inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;}
inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;}
inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;}
inline void RS(char *s1, char *s2){RS(s1), RS(s2);}
inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);}

template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));}
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);}
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);}
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));}
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);}
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);}
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);}
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);}
template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();}
template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();}
template<class T> inline void CLR(T &A){A.clear();}
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);}
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);}
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);}

template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;}
template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;}

。。。其实这段鬼畜的东西主要就 3 个函数。。

  • .. RST(A) .. reset 。。。清 0 。。。
  • .. FLC(A, x) .. fillchar(取自 Pascall)… 表示普通的 memset。。。
  • .. CLR(A).. clear。。。表示 clear 掉。。注意这个东西。。如果传进去的是 优先队列 的话也会有处理。。。一个一个弹掉。。。

以下开始是 Add – On 的部分啦。。首先是放常量表的地方。。。。。

/** Add - On **/

const int dx[] = {-1, 0, 1, 0};
const int dy[] = {0, 1, 0, -1};

const int MOD = 1000000007;
//int MOD = 99990001;
const int INF = 0x3f3f3f3f;
const LL INFF = 1LL << 60;
const DB EPS = 1e-9;
const DB OO = 1e15;
const DB PI = acos(-1.0); //M_PI;

之后是各种模块。。。


。。。注意一般来说 checkMin。。 checkMax。。都是只需要定义 < 号。。。。 [cpp title="<<= ` 1. Bitwise Operation ., (位运算。。"] // <<= ` 1. Bitwise Operation ., namespace BO{ inline bool _1(int x, int i){return bool(x&1<<i);} inline bool _1(LL x, int i){return bool(x&1LL<<i);} inline LL _1(int i){return 1LL<<i;} inline LL _U(int i){return _1(i) - 1;}; inline int reverse_bits(int x){ x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); return x; } inline LL reverse_bits(LL x){ x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); return x; } template<class T> inline bool odd(T x){return x&1;} template<class T> inline T low_bit(T x) {return x & -x;} template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;} template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;} inline int low_idx(int x){return __builtin_ffs(x);} inline int low_idx(LL x){return __builtin_ffsll(x);} inline int high_idx(int x){return low_idx(reverse_bits(x));} inline int high_idx(LL x){return low_idx(reverse_bits(x));} inline int clz(int x){return __builtin_clz(x);} inline int clz(LL x){return __builtin_clzll(x);} inline int ctz(int x){return __builtin_ctz(x);} inline int ctz(LL x){return __builtin_ctzll(x);} inline int parity(int x){return __builtin_parity(x);} inline int parity(LL x){return __builtin_parityll(x);} inline int lg2(int a){return 31 - __builtin_clz(a);} inline int count_bits(int x){return __builtin_popcount(x);} inline int count_bits(LL x){return __builtin_popcountll(x);} } using namespace BO; [/cpp] From Matrix67 .. .
位运算讲解系列文章(目录)(必读。。
趣题:用位运算生成下一个含有 k 个 1 的二进制数
神秘常量复出!用 0x077CB531 计算末尾 0 的个数

From 演算法笔记 .. .
Bitwise Operation ( Under Construction!

其他。。
[技巧]枚举子集的飘逸写法 by 柯神

namespace NT{

inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;}
inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;}
inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;}
inline int dff(int a, int b){a -= b; if (a < 0) a  += MOD; return a;}
inline void MUL(int &a, int b){a = (LL)a * b % MOD;}
inline int pdt(int a, int b){return (LL)a * b % MOD;}

inline int sum(int a, int b, int c){return sum(sum(a, b), c);}
inline int sum(int a, int b, int c, int d){return sum(sum(a, b), sum(c, d));}
inline int pdt(int a, int b, int c){return pdt(pdt(a, b), c);}
inline int pdt(int a, int b, int c, int d){return pdt(pdt(pdt(a, b), c), d);}

inline int pow(int a, LL b){
    int c(1); while (b){
        if (b&1) MUL(c, a);
        MUL(a, a), b >>= 1;
    }
    return c;
}

template<class T> inline T pow(T a, LL b){
    T c(1); while (b){
        if (b&1) c *= a;
        a *= a, b >>= 1;
    }
    return c;
}

inline int _I(int b){
    int a = MOD, x1 = 0, x2 = 1, q;
    while (true){
        q = a / b, a %= b;
        if (!a) return (x2 + MOD) % MOD;
        DEC(x1, pdt(q, x2));

        q = b / a, b %= a;
        if (!b) return (x1 + MOD) % MOD;
        DEC(x2, pdt(q, x1));
    }
}

inline void DIA(int &a, int b){MUL(a, _I(b));}
inline int qtt(int a, int b){return pdt(a, _I(b));}


inline int phi(int n){
    int res = n; for (int i=2;sqr(i)<=n;++i) if (!(n%i)){
        DEC(res, qtt(res, i));
        do{n /= i;} while(!(n%i));
    }
    if (n != 1)
        DEC(res, qtt(res, n));
    return res;
}

} using namespace NT;

呵呵。。这个数论模块也太弱了吧?。。(。暂时先这样吧。。

(。。。3 – 8 占位。。。日后待补充。。。

namespace CG{

struct Po; struct Line; struct Seg;

inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;}
inline int sgn(DB x, DB y){return sgn(x - y);}

struct Po{
    DB x, y;
    Po(DB _x = 0, DB _y = 0):x(_x), y(_y){}

    friend istream& operator >>(istream& in, Po &p){return in >> p.x >> p.y;}
    friend ostream& operator <<(ostream& out, Po p){return out << "(" << p.x << ", " << p.y << ")";}

    friend bool operator ==(Po, Po);
    friend bool operator !=(Po, Po);

    friend Po operator +(Po, Po);
    friend Po operator -(Po, Po);
    friend Po operator *(Po, DB);
    friend Po operator /(Po, DB);

    bool operator < (const Po &rhs) const{return sgn(x, rhs.x) < 0 || sgn(x, rhs.x) == 0 && sgn(y, rhs.y) < 0;}
    Po operator -() const{return Po(-x, -y);}
    Po& operator +=(Po rhs){x += rhs.x, y += rhs.y; return *this;}
    Po& operator -=(Po rhs){x -= rhs.x, y -= rhs.y; return *this;}
    Po& operator *=(DB k){x *= k, y *= k; return *this;}
    Po& operator /=(DB k){x /= k, y /= k; return *this;}

    DB length_sqr() const{return sqr(x) + sqr(y);}
    DB length() const{return sqrt(length_sqr());}
    Po unit() const{return (*this) / length();}
    bool dgt() const{return !sgn(x) && !sgn(y);}
    DB atan() const{return atan2(y, x);}
    void input(){scanf("%lf %lf", &x, &y);}
};

bool operator ==(Po a, Po b){return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;}
bool operator !=(Po a, Po b){return sgn(a.x - b.x) != 0 || sgn(a.y - b.y) != 0;}
Po operator +(Po a, Po b){return Po(a.x + b.x, a.y + b.y);}
Po operator -(Po a, Po b){return Po(a.x - b.x, a.y - b.y);}
Po operator *(Po a, DB k){return Po(a.x * k, a.y * k);}
Po operator *(DB k, Po a){return a * k;}
Po operator /(Po a, DB k){return Po(a.x / k, a.y / k);}


struct Line{
    Po a, b;
    Line(const Po &a = Po(), const Po &b = Po()):a(a), b(b){}
    Line(const Line &l):a(l.a), b(l.b){}
    Line(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){}

    void getequation(DB, DB, DB) const;

    Line operator +(Po x) const{return Line(a + x, b + x);}
    friend ostream& operator <<(ostream& out, Line p){return out << p.a << "-" << p.b;}
    DB length() const{return (b - a).length();}
    bool dgt() const{return (a-b).dgt();}
    void input(){a.input(), b.input();}
};


struct Seg: Line{
    Seg(const Po &a = Po(), const Po &b = Po()):Line(a, b){}
    Seg(const Line &l):Line(l){}
    Seg(DB x0, DB y0, DB x1, DB y1):Line(x0, y0, x1, y1){}
};

#define innerProduct dot
#define scalarProduct dot
#define dotProduct dot
#define outerProduct det
#define crossProduct det

inline DB dot(const DB &x1, const DB &y1, const DB &x2, const DB &y2){return x1 * x2 + y1 * y2;}
inline DB dot(const Po &a, const Po &b){return dot(a.x, a.y, b.x, b.y);}
inline DB dot(const Po &p0, const Po &p1, const Po &p2){return dot(p1 - p0, p2 - p0);}
inline DB dot(const Po &o, const Line &l){return dot(o, l.a, l.b);}
inline DB dot(const Line &l, const Po &o){return dot(o, l.a, l.b);}
inline DB dot(const Line &l1, const Line &l2){return dot(l1.b - l1.a, l2.b - l2.a);}

inline DB det(const DB &x1, const DB &y1, const DB &x2, const DB &y2){return x1 * y2 - x2 * y1;}
inline DB det(const Po &a, const Po &b){return det(a.x, a.y, b.x, b.y);}
inline DB det(const Po &p0, const Po &p1, const Po &p2){return det(p1 - p0, p2 - p0);}
inline DB det(const Po &o, const Line &l){return det(o, l.a, l.b);}
inline DB det(const Line &l, const Po &o){return det(o, l.a, l.b);}
inline DB det(const Line &l1, const Line &l2){return det(l1.b - l1.a, l2.b - l2.a);}

void Line::getequation(DB A, DB B, DB C) const{
    A = a.y - b.y, B = b.x - a.x, C = det(a, b);
}

template<class T1, class T2> inline DB dist(const T1 &x, const T2 &y){return sqrt(dist_sqr(x, y));}
template<class T1, class T2, class T3> inline DB dist(const T1 &x, const T2 &y, const T3 &z){return sqrt(dist_sqr(x, y, z));}
template<class T1, class T2> inline int dett(const T1 &x, const T2 &y){return sgn(det(x, y));}
template<class T1, class T2> inline int dott(const T1 &x, const T2 &y){return sgn(dot(x, y));}
template<class T1, class T2, class T3> inline int dett(const T1 &x, const T2 &y, const T3 &z){return sgn(det(x, y, z));}
template<class T1, class T2, class T3> inline int dott(const T1 &x, const T2 &y, const T3 &z){return sgn(dot(x, y, z));}
template<class T1, class T2, class T3, class T4> inline int dett(const T1 &x, const T2 &y, const T3 &z, const T4 &w){return sgn(det(x, y, z, w));}
template<class T1, class T2, class T3, class T4> inline int dott(const T1 &x, const T2 &y, const T3 &z, const T4 &w){return sgn(dot(x, y, z, w));}

inline DB dist_sqr(const DB &x, const DB &y){return sqr(x) + sqr(y);}
inline DB dist_sqr(const DB &x, const DB &y, const DB &z){return sqr(x) + sqr(y) + sqr(z);}
inline DB dist_sqr(const Po &a, const Po &b){return sqr(a.x - b.x) + sqr(a.y - b.y);}
inline DB dist_sqr(const Po &p, const Line &l){Po v0 = l.b - l.a, v1 = p - l.a; return sqr(fabs(det(v0, v1))) / v0.length_sqr();}
inline DB dist_sqr(const Po &p, const Seg &l){
    Po v0 = l.b - l.a, v1 = p - l.a, v2 = p - l.b;
    if (sgn(dot(v0, v1)) * sgn(dot(v0, v2)) <= 0) return dist_sqr(p, Line(l));
    else return min(v1.length_sqr(), v2.length_sqr());
}
inline DB dist_sqr(Line l, Po p){return dist_sqr(p, l);}
inline DB dist_sqr(Seg l, Po p){return dist_sqr(p, l);}
inline DB dist_sqr(Line l1, Line l2){
    if (sgn(det(l1, l2)) != 0) return 0;
    return dist_sqr(l1.a, l2);
}
inline DB dist_sqr(Line l1, Seg l2){
    Po v0 = l1.b - l1.a, v1 = l2.a - l1.a, v2 = l2.b - l1.a; DB c1 = det(v0, v1), c2 = det(v0, v2);
    return sgn(c1) != sgn(c2) ? 0 : sqr(min(fabs(c1), fabs(c2))) / v0.length_sqr();
}

bool isIntersect(Seg l1, Seg l2){

    if (l1.a == l2.a || l1.a == l2.b || l1.b == l2.a || l1.b == l2.b) return true;

    return
        min(l1.a.x, l1.b.x) <= max(l2.a.x, l2.b.x) &&
        min(l2.a.x, l2.b.x) <= max(l1.a.x, l1.b.x) &&
        min(l1.a.y, l1.b.y) <= max(l2.a.y, l2.b.y) &&
        min(l2.a.y, l2.b.y) <= max(l1.a.y, l1.b.y) &&
    sgn( det(l1.a, l2.a, l2.b) ) * sgn( det(l1.b, l2.a, l2.b) ) <= 0 &&
    sgn( det(l2.a, l1.a, l1.b) ) * sgn( det(l2.b, l1.a, l1.b) ) <= 0;

}

inline DB dist_sqr(Seg l1, Seg l2){
    if (isIntersect(l1, l2)) return 0;
    else return min(dist_sqr(l1.a, l2), dist_sqr(l1.b, l2), dist_sqr(l2.a, l1), dist_sqr(l2.b, l1));
}

inline bool isOnSide(const Po &p, const Seg &l){
    return p == l.a || p == l.b;
}

inline bool isOnSeg(const Po &p, const Seg &l){
    return sgn(det(p, l.a, l.b)) == 0 &&
        sgn(l.a.x, p.x) * sgn(l.b.x, p.x) <= 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) <= 0;
}

inline bool isOnSegg(const Po &p, const Seg &l){
    return sgn(det(p, l.a, l.b)) == 0 &&
        sgn(l.a.x, p.x) * sgn(l.b.x, p.x) < 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) < 0;
}

inline Po intersect(const Line &l1, const Line &l2){
    return l1.a + (l1.b - l1.a) * (det(l2.a, l1.a, l2.b) / det(l2, l1));
}

// perpendicular foot
inline Po intersect(const Po & p, const Line &l){
    return intersect(Line(p, p + Po(l.a.y - l.b.y, l.b.x - l.a.x)), l);
}

inline Po rotate(Po p, DB alpha, Po o = Po()){
    p.x -= o.x, p.y -= o.y;
    return Po(p.x * cos(alpha) - p.y * sin(alpha), p.y * cos(alpha) + p.x * sin(alpha)) + o;
}

} using namespace CG;

。。。。求垂足的地方好像有点问题。。。

// <<= ' A. Random Event ..

namespace RNG{
//srand((unsigned)time(NULL));
inline unsigned int rand16(){return (bool(rand()&1) << 15) | rand();}
inline unsigned int rand32(){return (rand16() << 16) | rand16();}
inline ULL rand64(){return ((LL)rand32() << 32) | rand32();}
inline ULL random(LL l, LL r){return rand64() % (r - l) + l;}
int dice(){return rand() % 6;}
bool coin(){return bool(rand() % 2);}
} using namespace RNG;

// <<= ' B. Clock

namespace CLOCK{
DB s0, s1, rd, k, T;
inline DB getTime(){
#ifdef LOCAL
    return 1.0 * clock() / CLOCKS_PER_SEC;
#else
    timeval tv;
    gettimeofday(&tv, 0);
    return tv.tv_sec + tv.tv_usec * 1e-6;
#endif
}

inline void st0(DB _T = 0.98){T = _T, s0 = getTime();}
inline void st1(DB _k = 1.618){k = _k, s1 = getTime();}
inline void ed1(){rd = getTime() - s1;}
inline DB elapsed(){return getTime() - s0;}
inline bool safe(){return elapsed() + rd * k < T;}
} //using namespace CLOCK;

// <<= ' C. Temp .. .

template<class T> PTT operator+(const PTT &p1, const PTT &p2) {
	return PTT(p1.fi + p2.fi, p1.se + p2.se);
}

template<class T> PTT operator-(const PTT &p1, const PTT &p2) {
	return PTT(p1.fi - p2.fi, p1.se - p2.se);
}

template<class T> PTT operator*(const PTT &lhs, T k){
    return PTT(lhs.fi * k, lhs.se * k);
}

// <<= ' 0. I/O Accelerator interface .,

template<class T> inline T& RD(T &x){
    //cin >> x;
    //scanf("%d", &x);
    char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c - '0';
    //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0';
    return x;
}

int ____Case; template<class T> inline void OT(const T &x){
    //if (x == -1) printf("Case %d: NO\n", ++____Case);
    //else printf("Case %d: %d\n", ++____Case, x);
    //printf("%I64d\n", x);
    //printf("%.2lf\n", x);
    printf("%d\n", x);
    //cout << x << endl;
}

/* .................................................................................................................................. */

const int N = 100009;

int n;

int main(){

#ifndef ONLINE_JUDGE
    //freopen("in.txt", "r", stdin);
#endif

    while (scanf("%d", &n) != EOF){
    }
}

。。。。