。终 Board。。。。恭喜杜教取得 #7 的冠军。。虽然没有 AK。。还是被她得到了《xxx 写真集》。。。。。04 最终三个程序通过。。2 个树套树一个分块(Java 的)。。。。。。。。注:04 的 pretest
和 systest
一样但居然还有 RP 爆炸 fst 的。(卡过了 pre 没卡过 systest。。。)。。。。。
http://bestcoder.hdu.edu.cn/contests/contest_show.php?cid=531
1001 Little Pony and Permutation
题意:
求一个循环的循环分解。
分析:
直接 while 循环搞搞就好了。
1002 Little Pony and Alohomora Part I
http://acm.hdu.edu.cn/showproblem.php?pid=4986
题意:
求随机排列的期望循环个数。
分析:
【引理 1】对于一个随机排列的某个元素,处在一个长度为 $$k$$ 的循环中的概率为 $$1/n$$(与循环的长度无关)。
证明:
方法一:
考察某个元素处在长度为 $k$ 的循环中的方案数,有:
$$!\binom{n-1}{k-1}(k-1)!(n-k)! = (n-1)! $$
比上总的方案数得到概率:
$$!\frac{(n-1)!}{n!} = \frac{1}{n}$$
方法二:
。。。
我们可以用第一题的方法,将每个排列写成 Cycle Notation
,并将每个循环中最小的元素放在末尾。
那么每一个排列的 Cycle Notation
和另一个排列可以建立起一一对应。而 1 处在的循环中的长度等于它在排列中的位置,因此所有长度的概率都是 $$\frac{1}{n}$$。
——————————
考虑 dp 。。设 e[n] 表示长度为 n 的排列的循环个数的期望。。我们枚举其中一个循环的长度。根据期望可加。。有。。。
$$!e[n] = \frac{\sum_{i=1}^n e[n-i]}{n} $$
也就是 e[n] = H[n] (调和级数)
对于调和级数,可以较小项暴力,较大项时用 log() 近似。
(当然似乎找规律也能过。。。。。)
1003 Little Pony and Dice
http://acm.hdu.edu.cn/showproblem.php?pid=4987
题意:
有一个 $$m$$ 面的均匀骰子([1, $$m$$]),然后从 0 出发,根据扔的数字,决定向前走的步数,走到 $$\geq n$$ 时就停止。
求刚好在 $$n$$ 停止的概率。要求误差 $$10^{-5}$$ 以内。($$1\leq m, n\leq 10^9$$)
分析:
当 $$m$$ 很大时,概率会接近 0,由于误差 $$10^{-5}$$,当 $$n\geq 600000$$ 时,直接返回 0。。
(。。。$$n=m$$ 时的答案约是 $$e^{-1/n}$$。。.因此实际这个值大约是 550000 左右。。。)
- 当 $$m\geq n$$ 时:
设 f[i] 表示距离 n 还有 i 步时所求的概率,有:
f[i] = sigma j < i (dp[j])/m f[i-1] = sigma j < i-1 (dp[j])/m f[i] - f[i-1] = dp[i-1]/m f[i] = f[i-1]*(1+1/m) 初值 f[1] = 1/m
解得:
$$!f[n] = \frac{(1+1/m)^{n-1}}{m}$$。
当 $$n$$ 很大后,因为这个值会很快收敛的 $$ 2/(m+1) $$。。
考虑 DP,并用部分和优化到 $$O(n)$$。
#include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> #include <cassert> #include <complex> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) #define ACCU accumulate #define TWO(x) (1<<(x)) #define TWOL(x) (1ll<<(x)) #define clr(a) memset(a,0,sizeof(a)) #define POSIN(x,y) (0<=(x)&&(x)<n&&0<=(y)&&(y)<m) #define PRINTC(x) cout<<"Case #"<<++__<<": "<<x<<endl #define POP(x) (__builtin_popcount(x)) #define POPL(x) (__builtin_popcountll(x)) typedef vector<int> VI; typedef vector<string> VS; typedef vector<double> VD; typedef long long ll; typedef long double LD; typedef pair<int,int> PII; typedef pair<ll,ll> PLL; typedef vector<ll> VL; typedef vector<PII> VPII; typedef complex<double> CD; const int inf=0x20202020; const ll mod=1000000007; const double eps=1e-9; const double pi=3.1415926535897932384626; const int DX[]={1,0,-1,0},DY[]={0,1,0,-1}; ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll powmod(ll a,ll b,ll mod) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;} // head const int N=1000000; double dp[N+100],s[N+100]; int n,m; int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif while (scanf("%d%d",&m,&n)!=EOF) { if (m>=600000) puts("0.00000"); else { if (n<=m) printf("%.5f\n",pow(1+1./m,n-1)/m); else { dp[0]=1; s[0]=1; for (int i=1;i<=n;i++) { if (i<=m) dp[i]=s[i-1]/m; else dp[i]=(s[i-1]-s[i-m-1])/m; s[i]=s[i-1]+dp[i]; if (i>=m&&abs(dp[i]-2./(m+1))<=1e-9) { n=i;break;} } printf("%.5f\n",dp[n]); } } } }
1004 Little Pony and Boast Busters
http://acm.hdu.edu.cn/showproblem.php?pid=4988
题意:
给定上下两个排列 A[]
, B[]
,要求询问相同项之间两两连线的交叉数,并支持交换操作。。。
分析:
。。。静态问题就是求排列 P[]
的逆序对。。
其中 P[i] = pA[B[i]]
。 (这里 pA[]
是 A[]
中某个元素的位置。。类似的 pB[]
是 B[]
中某个元素的位置。。。)
考察交换操作。。无论是交换下排还是上排,都可以看成交换 P[]
中的两项。。。
对于交换下排。。。
swap(B[a], B[b]); pB[B[a]]=a,pB[B[b]]=b, swap(P[a], P[b]);
对于交换上排。。有。
swap(A[a],A[b]); pA[A[a]]=a,pA[A[b]]=b, swap(P[pB[A[a]]], P[pB[A[b]]]);
于是转化成动态逆序对问题,支持修改排列中的任意一项。
动态逆序对问题等价于区间 kth
大值(区间 Rank
)问题。。可以用经典的树套树方法。。。
。。复杂度 $$O(nlog^2n)$$。
/** Micro Mezz Macro Flation -- Overheated Economy ., Last Update: Aug. 17th 2014 **/ //{ /** Header .. **/ //{ #pragma comment(linker, "/STACK:36777216") //#pragma GCC optimize ("O2") #define LOCAL //#include "testlib.h" #include <functional> #include <algorithm> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <numeric> #include <cstring> #include <climits> #include <cassert> #include <complex> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <list> #include <set> #include <map> //#include <tr1/unordered_set> //#include <tr1/unordered_map> //#include <array> using namespace std; #define REP(i, n) for (int i=0;i<n;++i) #define FOR(i, a, b) for (int i=a;i<b;++i) #define DWN(i, b, a) for (int i=b-1;i>=a;--i) #define REP_1(i, n) for (int i=1;i<=n;++i) #define FOR_1(i, a, b) for (int i=a;i<=b;++i) #define DWN_1(i, b, a) for (int i=b;i>=a;--i) #define REP_C(i, n) for (int n____=n,i=0;i<n____;++i) #define FOR_C(i, a, b) for (int b____=b,i=a;i<b____;++i) #define DWN_C(i, b, a) for (int a____=a,i=b-1;i>=a____;--i) #define REP_N(i, n) for (i=0;i<n;++i) #define FOR_N(i, a, b) for (i=a;i<b;++i) #define DWN_N(i, b, a) for (i=b-1;i>=a;--i) #define REP_1_C(i, n) for (int n____=n,i=1;i<=n____;++i) #define FOR_1_C(i, a, b) for (int b____=b,i=a;i<=b____;++i) #define DWN_1_C(i, b, a) for (int a____=a,i=b;i>=a____;--i) #define REP_1_N(i, n) for (i=1;i<=n;++i) #define FOR_1_N(i, a, b) for (i=a;i<=b;++i) #define DWN_1_N(i, b, a) for (i=b;i>=a;--i) #define REP_C_N(i, n) for (int n____=(i=0,n);i<n____;++i) #define FOR_C_N(i, a, b) for (int b____=(i=0,b);i<b____;++i) #define DWN_C_N(i, b, a) for (int a____=(i=b-1,a);i>=a____;--i) #define REP_1_C_N(i, n) for (int n____=(i=1,n);i<=n____;++i) #define FOR_1_C_N(i, a, b) for (int b____=(i=a,b);i<=b____;++i) #define DWN_1_C_N(i, b, a) for (int a____=(i=b,a);i>=a____;--i) #define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it) #define REP_S(i, str) for (char*i=str;*i;++i) #define REP_L(i, hd, suc) for (int i=hd;i;i=suc[i]) #define REP_G(i, u) REP_L(i,hd[u],suc) #define REP_SS(x, s) for (int x=s;x;x=(x-1)&s) #define DO(n) for ( int ____n = n; ____n-->0; ) #define REP_2(i, j, n, m) REP(i, n) REP(j, m) #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) #define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l) #define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l) #define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn) #define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn) #define ALL(A) A.begin(), A.end() #define LLA(A) A.rbegin(), A.rend() #define CPY(A, B) memcpy(A, B, sizeof(A)) #define INS(A, P, B) A.insert(A.begin() + P, B) #define ERS(A, P) A.erase(A.begin() + P) #define LBD(A, x) (lower_bound(ALL(A), x) - A.begin()) #define UBD(A, x) (upper_bound(ALL(A), x) - A.begin()) #define CTN(T, x) (T.find(x) != T.end()) #define SZ(A) int((A).size()) #define PB push_back #define MP(A, B) make_pair(A, B) #define PTT pair<T, T> #define Ts *this #define rTs return Ts #define fi first #define se second #define re real() #define im imag() #define Rush for(int ____T=RD(); ____T--;) #define Display(A, n, m) { \ REP(i, n){ \ REP(j, m-1) cout << A[i][j] << " "; \ cout << A[i][m-1] << endl; \ } \ } #define Display_1(A, n, m) { \ REP_1(i, n){ \ REP_1(j, m-1) cout << A[i][j] << " "; \ cout << A[i][m] << endl; \ } \ } typedef long long LL; //typedef long double DB; typedef double DB; typedef unsigned uint; typedef unsigned long long uLL; typedef vector<int> VI; typedef vector<char> VC; typedef vector<string> VS; typedef vector<LL> VL; typedef vector<DB> VF; typedef set<int> SI; typedef set<string> SS; typedef map<int, int> MII; typedef map<string, int> MSI; typedef pair<int, int> PII; typedef pair<LL, LL> PLL; typedef vector<PII> VII; typedef vector<VI> VVI; typedef vector<VII> VVII; template<class T> inline T& RD(T &); template<class T> inline void OT(const T &); //inline int RD(){int x; return RD(x);} inline LL RD(){LL x; return RD(x);} inline DB& RF(DB &); inline DB RF(){DB x; return RF(x);} inline char* RS(char *s); inline char& RC(char &c); inline char RC(); inline char& RC(char &c){scanf(" %c", &c); return c;} inline char RC(){char c; return RC(c);} //inline char& RC(char &c){c = getchar(); return c;} //inline char RC(){return getchar();} template<class T> inline T& RDD(T &); inline LL RDD(){LL x; return RDD(x);} template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;} template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;} template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;} template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;} template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;} template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);} template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);} template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} inline char& RC(char &a, char &b){RC(a), RC(b); return a;} inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;} inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;} inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;} inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;} inline void RS(char *s1, char *s2){RS(s1), RS(s2);} inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);} template<class T0,class T1>inline void RDD(T0&a, T1&b){RDD(a),RDD(b);} template<class T0,class T1,class T2>inline void RDD(T0&a, T1&b, T2&c){RDD(a),RDD(b),RDD(c);} template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} template<class T> inline void CLR(T &A){A.clear();} template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);} template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);} template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);} template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();} template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();} template<class T> inline void CLR(stack<T> &S){while (!S.empty()) S.pop();} template<class T> inline void CLR(queue<T> &Q){while (!Q.empty()) Q.pop();} template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} template<class T> inline bool EPT(T &a){return a.empty();} template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;} template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;} template<class T> inline T& RVS(T &A){reverse(ALL(A)); return A;} template<class T> inline T& UNQQ(T &A){A.resize(unique(ALL(A))-A.begin());return A;} template<class T> inline T& UNQ(T &A){SRT(A);return UNQQ(A);} //} /** Constant List .. **/ //{ const int MOD = int(1e9) + 7; const int INF = 0x3f3f3f3f; const LL INFF = 0x3f3f3f3f3f3f3f3fLL; const DB EPS = 1e-9; const DB OO = 1e20; const DB PI = acos(-1.0); //M_PI; const int dx[] = {-1, 0, 1, 0}; const int dy[] = {0, 1, 0, -1}; //} /** Add On .. **/ //{ // <<= '0. Nichi Joo ., //{ template<class T> inline T& checkMin(T &a,const T b){if (b<a) a=b;return a;} template<class T> inline T& checkMax(T &a,const T b){if (a<b) a=b;return a;} template<class T> inline T& checkMin(T &a, T &b, const T x){checkMin(a, x), checkMin(b, x);return a;} template<class T> inline T& checkMax(T &a, T &b, const T x){checkMax(a, x), checkMax(b, x);return a;} template <class T, class C> inline T& checkMin(T& a, const T b, C c){if (c(b,a)) a = b;return a;} template <class T, class C> inline T& checkMax(T& a, const T b, C c){if (c(a,b)) a = b;return a;} template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));} template<class T> inline T min(T a, T b, T c, T d, T e){return min(min(min(a,b),min(c,d)),e);} template<class T> inline T max(T a, T b, T c, T d, T e){return max(max(max(a,b),max(c,d)),e);} template<class T> inline T sqr(T a){return a*a;} template<class T> inline T cub(T a){return a*a*a;} template<class T> inline T ceil(T x, T y){return (x - 1) / y + 1;} template<class T> T abs(T x){return x>0?x:-x;} inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;} inline int sgn(DB x, DB y){return sgn(x - y);} inline DB cos(DB a, DB b, DB c){return (sqr(a)+sqr(b)-sqr(c))/(2*a*b);} inline DB cot(DB x){return 1./tan(x);}; inline DB sec(DB x){return 1./cos(x);}; inline DB csc(DB x){return 1./sin(x);}; //} // <<= '1. Bitwise Operation ., //{ namespace BO{ inline bool _1(int x, int i){return bool(x&1<<i);} inline bool _1(LL x, int i){return bool(x&1LL<<i);} inline LL _1(int i){return 1LL<<i;} inline LL _U(int i){return _1(i) - 1;}; inline int reverse_bits(int x){ x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); return x; } inline LL reverse_bits(LL x){ x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); return x; } template<class T> inline bool odd(T x){return x&1;} template<class T> inline bool even(T x){return !odd(x);} template<class T> inline T low_bit(T x) {return x & -x;} template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;} template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;} template<class T> inline int cover_idx(T x){int p = 0; while (_1(p) < x ) ++p; return p;} inline int clz(int x){return __builtin_clz(x);} inline int clz(LL x){return __builtin_clzll(x);} inline int ctz(int x){return __builtin_ctz(x);} inline int ctz(LL x){return __builtin_ctzll(x);} inline int lg2(int x){return !x ? -1 : 31 - clz(x);} inline int lg2(LL x){return !x ? -1 : 63 - clz(x);} inline int low_idx(int x){return !x ? -1 : ctz(x);} inline int low_idx(LL x){return !x ? -1 : ctz(x);} inline int high_idx(int x){return lg2(x);} inline int high_idx(LL x){return lg2(x);} inline int parity(int x){return __builtin_parity(x);} inline int parity(LL x){return __builtin_parityll(x);} inline int count_bits(int x){return __builtin_popcount(x);} inline int count_bits(LL x){return __builtin_popcountll(x);} } using namespace BO;//} // <<= '2. Number Theory .,//{ namespace NT{ #define gcd __gcd inline LL lcm(LL a, LL b){return a*b/gcd(a,b);} inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;} inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;} /* ģ�������պó� int ʱ�� inline int sum(uint a, int b){a += b; a %= MOD;if (a < 0) a += MOD; return a;} inline void INC(int &a, int b){a = sum(a, b);} */ inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;} inline int dff(int a, int b){a -= b; if (a < 0) a += MOD; return a;} inline void MUL(int &a, int b){a = (LL)a * b % MOD;} inline int pdt(int a, int b){return (LL)a * b % MOD;} inline int gcd(int m, int n, int &x, int &y){ x = 1, y = 0; int xx = 0, yy = 1, q; while (1){ q = m / n, m %= n; if (!m){x = xx, y = yy; return n;} DEC(x, pdt(q, xx)), DEC(y, pdt(q, yy)); q = n / m, n %= m; if (!n) return m; DEC(xx, pdt(q, x)), DEC(yy, pdt(q, y)); } } inline int sum(int a, int b, int c){return sum(a, sum(b, c));} inline int sum(int a, int b, int c, int d){return sum(sum(a, b), sum(c, d));} inline int pdt(int a, int b, int c){return pdt(a, pdt(b, c));} inline int pdt(int a, int b, int c, int d){return pdt(pdt(a, b), pdt(c, d));} inline int pow(int a, LL b){ int c(1); while (b){ if (b&1) MUL(c, a); MUL(a, a), b >>= 1; } return c; } template<class T> inline T pow(T a, LL b){ T c(1); while (b){ if (b&1) c *= a; a *= a, b >>= 1; } return c; } template<class T> inline T pow(T a, int b){ return pow(a, (LL)b); } inline int _I(int b){ int a = MOD, x1 = 0, x2 = 1, q; while (1){ q = a / b, a %= b; if (!a) return x2; DEC(x1, pdt(q, x2)); q = b / a, b %= a; if (!b) return x1; DEC(x2, pdt(q, x1)); } } inline void DIV(int &a, int b){MUL(a, _I(b));} inline int qtt(int a, int b){return pdt(a, _I(b));} } using namespace NT;//} //} /** I/O Accelerator Interface .. **/ //{ #define g (c=getchar()) #define d isdigit(g) #define p x=x*10+c-'0' #define n x=x*10+'0'-c #define pp l/=10,p #define nn l/=10,n template<class T> inline T& RD(T &x){ char c;while(!d);x=c-'0';while(d)p; return x; } template<class T> inline T& RDD(T &x){ char c;while(g,c!='-'&&!isdigit(c)); if (c=='-'){x='0'-g;while(d)n;} else{x=c-'0';while(d)p;} return x; } inline DB& RF(DB &x){ //scanf("%lf", &x); char c;while(g,c!='-'&&c!='.'&&!isdigit(c)); if(c=='-')if(g=='.'){x=0;DB l=1;while(d)nn;x*=l;} else{x='0'-c;while(d)n;if(c=='.'){DB l=1;while(d)nn;x*=l;}} else if(c=='.'){x=0;DB l=1;while(d)pp;x*=l;} else{x=c-'0';while(d)p;if(c=='.'){DB l=1;while(d)pp;x*=l;}} return x; } #undef nn #undef pp #undef n #undef p #undef d #undef g inline char* RS(char *s){ //gets(s); scanf("%s", s); return s; } LL last_ans; int Case; template<class T> inline void OT(const T &x){ //printf("Case #%d: ", ++Case); //printf("%lld\n", x); //printf("%.9f\n", x); //printf("%d\n", x); cout << x << endl; //last_ans = x; } //} //}/* .................................................................................................................................. */ const int N = int(1e5) + 9, LV = 25; namespace SBT{ const int NN = N*LV; int c[2][NN], sz[NN], ky[NN], tot; #define lx l[x] #define rx r[x] #define l c[d] #define r c[!d] #define kx ky[x] #define sx sz[x] #define d 0 int new_node(int v = 0){ int x=++tot;lx=rx=0; sx=1;kx=v; return x; } void upd(int x){ sx=sz[lx]+1+sz[rx]; } #undef d void rot(int &x,int d){ int y=rx;rx=l[y];l[y]=x; upd(x),upd(y),x=y; } void fix(int &x,int d){ if (sz[l[lx]] > sz[rx]) rot(x,!d); else{ if (sz[r[lx]] > sz[rx]) rot(lx,d),rot(x,!d); else return; } d=0,fix(lx,0),fix(rx,1); fix(x,0),fix(x,1); } #define d 0 void Ins(int &x,int v){ if(!x) x = new_node(v); else{ ++sz[x]; Ins(c[v>kx][x],v); fix(x,v>=kx); } } int d_key; void Del(int &x,int v){ --sx;if(kx==v||(v<kx&&!lx)||(v>kx&&!rx)){ if(!lx||!rx) d_key = kx, x = lx | rx; else Del(lx,v+1), kx = d_key; } else Del(c[v>kx][x],v); } int Rank(int x,int v){ int z=0;while(x){ if(kx<v){ z+=sz[lx]+1; x=rx; } else{ x=lx; } } return z; } bool Find(int x,int v){ if (!x) return 0;if (kx==v) return 1; return Find(c[v>kx][x],v); } void Init(){ tot = 0; } #undef d #undef l #undef r #undef lx #undef rx #undef sx #undef kx }; LL res; int n, m; namespace BIT{ int C[N]; void Ins(int x, int v){ for (;x<=n;x+=low_bit(x)) SBT::Ins(C[x],v); } void Del(int x, int v){ for (;x<=n;x+=low_bit(x)) SBT::Del(C[x],v); } int Rank(int x, int v){ int res = 0; for (;x;x^=low_bit(x)) res += SBT::Rank(C[x],v); return res; } int Count(int x){ int res = 0; for (;x;x^=low_bit(x)) res += SBT::sz[C[x]]; return res; } void Init(){ fill(C+1, C+n+1, 0); } }; int A[N], pA[N], B[N], pB[N]; int P[N]; void Init(){ SBT::Init(); BIT::Init(); res = 0; int x; REP_1(i, n) pA[++RD(A[i])] = i; REP_1(i, n){ pB[++RD(B[i])] = i; int x = pA[B[i]]; res += i-1-BIT::Rank(n,x+1); //# BIT::Ins(i, x), P[i] = x; } } #define v P[x] #define delta ((x-1)-BIT::Rank(x,v+1)+BIT::Rank(n,v)-BIT::Rank(x,v)) void Change(int x, int vv){ BIT::Del(x, v); res -= delta; v = vv; res += delta; BIT::Ins(x, v); } #undef v int main(){ #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); #endif //#define a A[x] //#define delta ((x-1)-BIT::Rank(x,a+1)+BIT::Rank(n,a)-BIT::Rank(x,a)) //汇编调栈 int __size__ = 256 << 20; // 256MB char *__p__ = (char*)malloc(__size__) + __size__; __asm__("movl %0, %%esp\n" :: "r"(__p__)); while (~scanf("%d", &n)){ Init(); char cmd[9]; Rush{ RS(cmd); if (cmd[0] == 'Q') OT(res); else{ int p, a, b; RD(p, a, b); ++a, ++b; if (p == 1){ swap(B[a], B[b]); pB[B[a]]=a,pB[B[b]]=b, Change(a, pA[B[a]]); Change(b, pA[B[b]]); } else{ swap(A[a],A[b]); pA[A[a]]=a,pA[A[b]]=b, Change(pB[A[a]], a); Change(pB[A[b]], b); } /*REP_1(i, n){ assert(P[i] == pA[B[i]]); }*/ } } } ////int x, aa; RD(x, aa); BIT::Del(x, a); }