Brief description:
。。给定一个 N 个顶点的无向图(稠密)、回答 Q 次询问。
问一条边的权值增加为 ci’ 后,新图的 MST。
(. .. N <= 3000, Q <= 10^6.. .) ..
Analysis:
下面介绍 O(mlogm) 算法、设原图的最小生成树为 T,若修改一条非树边、那么对结果没有影响(修改操作单调递增).. .
如果是树边、那么这条边可能会因为这次修改操作而被一条非树边替换掉、不难发现用以替换的边是唯一的。
于是得到算法,对每一条非树边、松弛生成树上这两点之间路径的所有树边。
则对于每一询问 (a, b, w’) .. .
if (!树边) return mst; else return mst - w[a][b] + min(w', s[a][b]);
其中 s[a][b] 是嗯嗯嗯嗯嗯的意思。
(如果使用 Kruskal() 算法求解最小生成树。。那么松弛的过程可以用并查集优化到 O(m) 。。。
次小生成树的算法有很多,对于这题、今年北京现场赛区 Problem A 的算法可能并不适用?。。)
/** ` Micro Mezzo Macro Flation -- Overheated Economy ., **/ #include <algorithm> #include <iostream> #include <iomanip> #include <sstream> #include <cstring> #include <complex> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <list> #include <set> #include <map> using namespace std; #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) #define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) #define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) #define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) #define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) #define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i) #define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i) #define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i) #define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i) #define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i) #define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i) #define DO(n) while(n--) #define DO_C(n) int n____ = n; while(n____--) #define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_) #define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_) #define SQZ(i, j, a, b) for (int i=int(a),j=int(b)-1;i<j;++i,--j) #define SQZ_1(i, j, a, b) for (int i=int(a),j=int(b);i<=j;++i,--j) #define REP_2(i, j, n, m) REP(i, n) REP(j, m) #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) #define ALL(A) A.begin(), A.end() #define LLA(A) A.rbegin(), A.rend() #define CPY(A, B) memcpy(A, B, sizeof(A)) #define INS(A, P, B) A.insert(A.begin() + P, B) #define ERS(A, P) A.erase(A.begin() + P) #define BSC(A, X) find(ALL(A), X) // != A.end() #define CTN(T, x) (T.find(x) != T.end()) #define SZ(A) int(A.size()) #define PB push_back #define MP(A, B) make_pair(A, B) #define Rush int T____; RD(T____); DO(T____) #pragma comment(linker, "/STACK:36777216") #pragma GCC optimize ("O2") #define Ruby system("ruby main.rb") #define Haskell system("runghc main.hs") #define Pascal system("fpc main.pas") typedef long long LL; typedef double DB; typedef unsigned UINT; typedef unsigned long long ULL; typedef vector<int> VI; typedef vector<char> VC; typedef vector<string> VS; typedef vector<LL> VL; typedef vector<DB> VD; typedef set<int> SI; typedef set<string> SS; typedef set<LL> SL; typedef set<DB> SD; typedef map<int, int> MII; typedef map<string, int> MSI; typedef map<LL, int> MLI; typedef map<DB, int> MDI; typedef map<int, bool> MIB; typedef map<string, bool> MSB; typedef map<LL, bool> MLB; typedef map<DB, bool> MDB; typedef pair<int, int> PII; typedef pair<int, bool> PIB; typedef vector<PII> VII; typedef vector<VI> VVI; typedef vector<VII> VVII; typedef set<PII> SII; typedef map<PII, int> MPIII; typedef map<PII, bool> MPIIB; /** I/O Accelerator **/ /* ... :" We are I/O Accelerator ... Use us at your own risk ;) ... " .. */ template<class T> inline void RD(T &); template<class T> inline void OT(const T &); inline int RD(){ int x; RD(x); return x;} template<class T> inline T& _RD(T &x){ RD(x); return x;} inline void RC(char &c){scanf(" %c", &c);} inline void RS(char *s){scanf("%s", s);} template<class T0, class T1> inline void RD(T0 &x0, T1 &x1){RD(x0), RD(x1);} template<class T0, class T1, class T2> inline void RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2);} template<class T0, class T1, class T2, class T3> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6);} template<class T0, class T1> inline void OT(T0 &x0, T1 &x1){OT(x0), OT(x1);} template<class T0, class T1, class T2> inline void OT(T0 &x0, T1 &x1, T2 &x2){OT(x0), OT(x1), OT(x2);} template<class T0, class T1, class T2, class T3> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} template<class T> inline void CLR(T &A){A.clear();} template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2){FLC(A0), FLC(A1), FLC(A2);} template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3){FLC(A0), FLC(A1), FLC(A2), FLC(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5), FLC(A6);} template<class T> inline void SRT(T &A){sort(ALL(A));} template<class T, class C> inline void SRT(T &A, C B){sort(ALL(A), B);} /** Add - On **/ const int MOD = 1000000007; const int INF = 0x7f7f7f7f; const DB EPS = 1e-6; const DB OO = 1e15; const DB PI = acos(-1.0); // <<= ` 0. Daily Use ., template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} template<class T> inline void checkMax(T &a,const T b){if (b>a) a=b;} template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} template<class T> inline T sqr(T a){return a*a;} template<class T> inline T cub(T a){return a*a*a;} int Ceil(int x, int y){return (x - 1) / y + 1;} // <<= ` 1. Bitwise Operation ., inline bool _1(int x, int i){return x & 1<<i;} inline int _1(int i){return 1<<i;} inline int _U(int i){return _1(i) - 1;}; inline int count_bits(int x){ x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1); x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2); x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4); x = (x & 0x00ff00ff) + ((x & 0xff00ff00) >> 8); x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16); return x; } template<class T> inline T low_bit(T x) { return x & -x; } template<class T> inline T high_bit(T x) { T p = low_bit(x); while (p != x) x -= p, p = low_bit(x); return p; } // <<= ` 2. Modular Arithmetic Basic ., inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;} inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;} inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;} inline int dff(int a, int b){a -= b; if (a < 0) a += MOD; return a;} inline void MUL(int &a, int b){a = int((LL)a * b % MOD);} inline int pdt(int a, int b){return int((LL)a * b % MOD);} // <<= ' 0. I/O Accelerator interface ., template<class T> inline void RD(T &x){ //cin >> x; //scanf("%d", &x); char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; } int ____Case; template<class T> inline void OT(const T &x){ //cout << x << endl; printf("%.4lf\n", x); //printf("%.2lf\n", x); //printf("Case %d: %d\n", ++____Case, x); } #define For_each(it, A) for (SII::iterator it = A.begin(); it != A.end(); ++it) /* .................................................................................................................................. */ const int N = 3009, M = N * N; int w[N][N], s[N][N]; bool InMst[N][N]; int P[N], R[N]; PII E[M]; VI adj[N]; bool c[N]; int d[N]; int prd[N], vis[N], m, _i; int n, q, mst; void Make(int x){ P[x] = x, R[x] = 0; } int Find(int x){ if (P[x] != x) P[x] = Find(P[x]); return P[x]; } void Union(int x, int y){ if (R[x] < R[y]) P[y] = x; else { if (R[x] == R[y]) R[y]++; P[x] = y; } } void Prim1(){ m = 0, RST(c), FLC(d, 0x7f), CPY(s, w), d[0] = 0; REP(i, n){ int u = 0; while (c[u]) ++u; FOR(i, u+1, n) if (!c[i] && d[i] < d[u]) u = i; if (d[u]) s[prd[u]][u] = INF - 1, E[m++] = MP(prd[u], u); c[u] = true; REP(v, n) if (!c[v] && w[u][v] < d[v]) d[v] = w[u][v], prd[v] = u; } } void Prim2(){ RST(c), FLC(d, 0x7f), d[0] = 0; REP(i, n){ int u = 0; while(c[u]) ++u; FOR(i, u+1, n) if (!c[i] && d[i] < d[u]) u = i; if (d[u]) s[prd[u]][u] = INF - 1, E[m++] = MP(prd[u], u); c[u] = true; REP(v, n) if (!c[v] && s[u][v] < d[v]) d[v] = s[u][v], prd[v] = u; } } #define a first #define b second bool comp(PII x, PII y){ return w[x.a][x.b] < w[y.a][y.b]; } void Kruskal(){ sort(E, E+m, comp); REP(i, n) Make(i); RST(InMst); mst = 0; REP(i, n) CLR(adj[i]); REP(i, m){ if (Find(E[i].a) == Find(E[i].b)) continue; Union(Find(E[i].a), Find(E[i].b)); InMst[E[i].a][E[i].b] = true, mst += w[E[i].a][E[i].b], adj[E[i].a].PB(E[i].b), adj[E[i].b].PB(E[i].a); } } #define v adj[u][i] void dfs(int u = 0, int p = -1){ prd[u] = p; REP(i, SZ(adj[u])) if (v != p){ dfs(v, u); } } #undef v int lca(int a, int b){ while (a != 0){ vis[a] = _i; a = prd[a]; } vis[0] = _i; while (vis[b] != _i){ b = prd[b]; } return b; } void link(int a, int b, int c){ int p = lca(a, b), t; #define Cloze(a, b) if (!s[a][b]) s[a][b] = s[b][a] = c while (a != p){ Cloze(a, prd[a]); t = prd[a], prd[a] = p, a = t; } while (b != p){ Cloze(b, prd[b]); t = prd[b], prd[b] = p, b = t; } } void Relax(){ RST(vis, prd, s); dfs(); REP(i, m){ if (InMst[E[i].a][E[i].b]) continue; _i = i + 1; link(E[i].a, E[i].b, w[E[i].a][E[i].b]); } REP(i, n) FOR(j, i+1, n) if (!s[i][j]) s[i][j] = INF; } #undef a #undef b int main(){ //freopen("in.txt", "r", stdin); while (scanf("%d %d", &n, &m) != EOF && n){ int a, b; FLC(w, 0x7f); REP(i, m){ RD(a, b); if (a > b) swap(a, b); RD(w[a][b]); } if (false && m > 2 * n) Prim1(), Prim2(); else {m = 0; REP(i, n) FOR(j, i+1, n) if (w[a][b] != INF) E[m++] = MP(i, j);} Kruskal(); Relax(); int sum = 0; int ww; DO_C(_RD(q)){ RD(a, b, ww); if (a > b) swap(a, b); if (!InMst[a][b]) sum += mst; else sum += mst - w[a][b] + min(ww, s[a][b]); } OT(DB(sum) / q); } }
Further discussion:
求 O(n2) 算法!!!
External link:
http://acm.hdu.edu.cn/showproblem.php?pid=4126
http://www.cppblog.com/MatoNo1/archive/2011/11/16/149812.html
https://www.shuizilong.com/house/wp-admin/post.php?post=2498&action=edit&message=1