可以先写一个暴力 RMQ 解决 K=1 的 10 分代码,确保自己没读错题理解成字符串问题了囧。
那么 top K 可以用类似 [USACO3.1]丑数 Humble Numbers 那个题里的方法,开个堆,每次找到一个数就分裂一下塞回去。
这个题数据量足够大,询问数组的下标从 0 开始,还要询问 rmq 的位置,非常适合用我们新学习的 O(n)-O(1) RMQ 大显身手!。。。
#include <lastweapon/bitwise> using namespace lastweapon; const int N = int(5e5) + 9; int s[N]; int n, K, L, R; template<typename T> struct rmq { vector<T> v; int n; static const int b = 30; // block size vector<int> mask, t; // mask and sparse table int op(int x, int y) { return v[x] < v[y] ? x : y; } // least significant set bit int lsb(int x) { return x & -x; } // index of the most significant set bit int msb_index(int x) { return __builtin_clz(1)-__builtin_clz(x); } // answer query of v[r-size+1..r] using the masks, given size <= b int small(int r, int size = b) { // get only 'size' least significant bits of the mask // and then get the index of the msb of that int dist_from_r = msb_index(mask[r] & ((1<<size)-1)); return r - dist_from_r; } rmq(){} rmq(const vector<T>& v_) : v(v_), n(v.size()), mask(n), t(n) { int curr_mask = 0; for (int i = 0; i < n; i++) { // shift mask by 1, keeping only the 'b' least significant bits curr_mask = (curr_mask<<1) & ((1<<b)-1); while (curr_mask > 0 and op(i, i - msb_index(lsb(curr_mask))) == i) { // current value is smaller than the value represented by the // last 1 in curr_mask, so we need to turn off that bit curr_mask ^= lsb(curr_mask); } // append extra 1 to the mask curr_mask |= 1; mask[i] = curr_mask; } // build sparse table over the n/b blocks // the sparse table is linearized, so what would be at // table[j][i] is stored in table[(n/b)*j + i] for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1); for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0; i+(1<<j) <= n/b; i++) t[n/b*j+i] = op(t[n/b*(j-1)+i], t[n/b*(j-1)+i+(1<<(j-1))]); } // query(l, r) returns the actual minimum of v[l..r] // to get the index, just change the first and last lines of the function T query(int l, int r) { // query too small //if (r-l+1 <= b) return v[small(r, r-l+1)]; if (r-l+1 <= b) return small(r, r-l+1); // get the minimum of the endpoints // (there is no problem if the ranges overlap with the sparse table query) int ans = op(small(l+b-1), small(r)); // 'x' and 'y' are the blocks we need to query over int x = l/b+1, y = r/b-1; if (x <= y) { int j = msb_index(y-x+1); ans = op(ans, op(t[n/b*j+x], t[n/b*j+y-(1<<j)+1])); } //return v[ans]; return ans; } }; rmq<int> T; struct rec { int i, l, r, m, f; rec(int i, int l, int r) : i(i), l(l), r(r), m(T.query(l, r)) { f = s[i] - s[m]; } bool operator < (const rec& r) const { return f < r.f; } }; int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("/Users/minakokojima/Documents/GitHub/ACM-Training/Workspace/out.txt", "w", stdout); #endif RD(n, K, L, R); VI a; a.PB(0); REP_1(i, n) RD(s[i]) += s[i-1], a.PB(s[i]); a.pop_back(); T = rmq<int>(a); priority_queue<rec> Q; FOR_1(i, L, n) { Q.push(rec(i, max(0, i-R), i-L)); } LL z = 0; DO(K) { auto u = Q.top(); Q.pop(); z += u.f; if (u.m != u.l) Q.push(rec(u.i, u.l, u.m-1)); if (u.m != u.r) Q.push(rec(u.i, u.m+1, u.r)); } cout << z << endl; }