Brief description:
Problem 250. Pillars
。。要在两面墙之间架一个梯子,两面墙高度皆为整数,均匀选自 [1, A] 和 [1, B] 之间。
。中间距离为 w,问梯子期望的长度。
(。。1 ≤ A, B ≤ 100, 000 。。。)
Problem 500. RectangularSum
给定一个逐行逐列依次填 {0, 1, 2, 3, 4, … nm-1} 的 n × m 矩阵。。
。。。问所有和等于 S 的子矩阵中,面积最小的是多少。
(。。1 ≤ n, m ≤ 100, 000 。。。1 ≤ S ≤ 100, 000, 000, 000。。。)
Problem 1000. MaximalTriangle
问正 n 边形的三角剖分中,有多少种剖分是可以产生一个面积最大的大三角形的。
(。。3 ≤ n ≤ 444 。。。)
Analysis:
Problem 250. Pillars
分组计数,枚举高度差。
Problem 500. RectangularSum
。。这题的难点主要在 O(1) 时间内实现一个名为 bool check(x, y); 的函数; 来判断长宽为 x, y ,和为 S 的子矩阵是否存在。。
这个先把整个子矩阵移动到最上角。。然后通过判断位移是否合法就行了。。
。。。然后外围用一个堆。。维护一堆下标。。这样貌似复杂度是 O(n^2logn)。。然后随便加了点剪枝就过掉了。。
Problem 1000. MaximalTriangle
。。没什么好的想法。。基本思想只能是先离散化三角形面积。然后枚举中间的大三角形。。然后产生三个方向的递归?。。
。。f(i, s) 表示一个 i 个定点的子区域中,所有不包含面积大于等于 s 的三角形的剖分数。。。。。。
貌似总的复杂度 O(n4) 。。(共 O(n3) 种状态。。转移。O(n)。。。。
(不过好像大家都是这样过的。。就是加常数优化。。 /$:o~o
DB sqr(DB x){ return x * x; } class Pillars { public: double getExpectedLength(int w, int x, int y) { DB q = min(x, y), p = w * q, pp, qq; REP_1_C(i, max(x, y)){ qq = min(x, max(0, y - i)), pp = sqrt(sqr(w) + sqr(i)) * qq; p += pp, q += qq; qq = min(max(0, x - i), y), pp = sqrt(sqr(w) + sqr(i)) * qq; p += pp, q += qq; } return p / q; } };
LL w, h, S; bool flag; bool check(LL x, LL y){ flag = false; LL A = x * y, B = A * (y - 1), C = x*(x-1) * (y*w); LL S = ::S - B - C; if (S < 0) return false; flag = true; LL d = S / (A*2); if (d * (A*2) != S) return false; LL up = (h - x + 1) * w; return d < up && d % w <= w - y; } class RectangularSum { public: long long minimalArea(LL h, LL w, LL S) { ::h = h, ::w = w, ::S = S, ::S <<= 1; priority_queue<PLI, vector<PLI>, greater<PLI> > Q; REP_1(i, h) Q.push(MP((LL)i, i)); #define s first #define x second while (!Q.empty()){ PLI cur = Q.top(); LL y = cur.s / cur.x; Q.pop(); if (check(cur.x, y)) return cur.s; if (y < w && flag) Q.push(MP(cur.s + cur.x, cur.x)); } return -1; } };
#define LOCAL /** ` Micro Mezzo Macro Flation -- Overheated Economy ., **/ #include <algorithm> #include <iostream> #include <iomanip> #include <sstream> #include <cstring> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <list> #include <set> #include <map> using namespace std; #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) #define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) #define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) #define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) #define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) #define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i) #define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i) #define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i) #define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i) #define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i) #define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i) #define ECH(it, A) for (typeof(A.begin()) it=A.begin(); it != A.end(); ++it) #define DO(n) while(n--) #define DO_C(n) int n____ = n; while(n____--) #define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_) #define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_) #define SQZ(i, j, a, b) for (int i=int(a),j=int(b)-1;i<j;++i,--j) #define SQZ_1(i, j, a, b) for (int i=int(a),j=int(b);i<=j;++i,--j) #define REP_2(i, j, n, m) REP(i, n) REP(j, m) #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) #define ALL(A) A.begin(), A.end() #define LLA(A) A.rbegin(), A.rend() #define CPY(A, B) memcpy(A, B, sizeof(A)) #define INS(A, P, B) A.insert(A.begin() + P, B) #define ERS(A, P) A.erase(A.begin() + P) #define BSC(A, X) find(ALL(A), X) // != A.end() #define CTN(T, x) (T.find(x) != T.end()) #define SZ(A) int(A.size()) #define PB push_back #define MP(A, B) make_pair(A, B) #define Rush int T____; RD(T____); DO(T____) #pragma comment(linker, "/STACK:36777216") //#pragma GCC optimize ("O2") #define Ruby system("ruby main.rb") #define Haskell system("runghc main.hs") #define Pascal system("fpc main.pas") typedef long long LL; typedef double DB; typedef unsigned UINT; typedef unsigned long long ULL; typedef vector<int> VI; typedef vector<char> VC; typedef vector<string> VS; typedef vector<LL> VL; typedef vector<DB> VD; typedef set<int> SI; typedef set<string> SS; typedef set<LL> SL; typedef set<DB> SD; typedef map<int, int> MII; typedef map<string, int> MSI; typedef map<LL, int> MLI; typedef map<DB, int> MDI; typedef map<int, bool> MIB; typedef map<string, bool> MSB; typedef map<LL, bool> MLB; typedef map<DB, bool> MDB; typedef pair<int, int> PII; typedef pair<int, bool> PIB; typedef vector<PII> VII; typedef vector<VI> VVI; typedef vector<VII> VVII; typedef set<PII> SII; typedef map<PII, int> MPIII; typedef map<PII, bool> MPIIB; /** I/O Accelerator **/ /* ... :" We are I/O Accelerator ... Use us at your own risk ;) ... " .. */ template<class T> inline void RD(T &); template<class T> inline void OT(const T &); inline int RD(){ int x; RD(x); return x;} template<class T> inline T& _RD(T &x){ RD(x); return x;} inline void RC(char &c){scanf(" %c", &c);} inline void RS(char *s){scanf("%s", s);} template<class T0, class T1> inline void RD(T0 &x0, T1 &x1){RD(x0), RD(x1);} template<class T0, class T1, class T2> inline void RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2);} template<class T0, class T1, class T2, class T3> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6);} template<class T0, class T1> inline void OT(T0 &x0, T1 &x1){OT(x0), OT(x1);} template<class T0, class T1, class T2> inline void OT(T0 &x0, T1 &x1, T2 &x2){OT(x0), OT(x1), OT(x2);} template<class T0, class T1, class T2, class T3> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){ while (!Q.empty()) Q.pop(); } template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){ while (!Q.empty()) Q.pop(); } template<class T> inline void CLR(T &A){A.clear();} template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2){FLC(A0), FLC(A1), FLC(A2);} template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3){FLC(A0), FLC(A1), FLC(A2), FLC(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5), FLC(A6);} template<class T> inline void SRT(T &A){sort(ALL(A));} template<class T, class C> inline void SRT(T &A, C B){sort(ALL(A), B);} /** Add - On **/ int MOD = 1000000007; const int INF = 0x3f3f3f3f; const LL INF_64 = 0x3f3f3f3f3f3f3f3fLL; const DB EPS = 1e-11; const DB OO = 1e15; const DB PI = 3.14159265358979323846264; //M_PI; // <<= ` 0. Daily Use ., template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} template<class T> inline void checkMax(T &a,const T b){if (b>a) a=b;} template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} template<class T> inline T max(T a, T b, T c, T d){return max(min(a, b), max(c, d));} template<class T> inline T sqr(T a){return a*a;} template<class T> inline T cub(T a){return a*a*a;} int Ceil(int x, int y){return (x - 1) / y + 1;} // <<= ` 1. Bitwise Operation ., inline bool _1(int x, int i){return x & 1<<i;} inline bool _1(LL x, int i){return x & 1LL<<i;} inline LL _1(int i){return 1LL<<i;} //inline int _1(int i){return 1<<i;} inline LL _U(int i){return _1(i) - 1;}; //inline int _U(int i){return _1(i) - 1;}; template<class T> inline T low_bit(T x) { return x & -x; } template<class T> inline T high_bit(T x) { T p = low_bit(x); while (p != x) x -= p, p = low_bit(x); return p; } inline int count_bits(int x){ x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1); x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2); x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4); x = (x & 0x00ff00ff) + ((x & 0xff00ff00) >> 8); x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16); return x; } inline int count_bits(LL x){ x = (x & 0x5555555555555555LL) + ((x & 0xaaaaaaaaaaaaaaaaLL) >> 1); x = (x & 0x3333333333333333LL) + ((x & 0xccccccccccccccccLL) >> 2); x = (x & 0x0f0f0f0f0f0f0f0fLL) + ((x & 0xf0f0f0f0f0f0f0f0LL) >> 4); x = (x & 0x00ff00ff00ff00ffLL) + ((x & 0xff00ff00ff00ff00LL) >> 8); x = (x & 0x0000ffff0000ffffLL) + ((x & 0xffff0000ffff0000LL) >> 16); x = (x & 0x00000000ffffffffLL) + ((x & 0xffffffff00000000LL) >> 32); return x; } int reverse_bits(int x){ x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); return x; } LL reverse_bits(LL x){ x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); return x; } // <<= ` 2. Modular Arithmetic Basic ., inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;} inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;} inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;} inline int dff(int a, int b){a -= b; if (a < 0) a += MOD; return a;} inline void MUL(int &a, int b){a = (LL)a * b % MOD;} inline int pdt(int a, int b){return (LL)a * b % MOD;} inline int pdt(int a, int b, int c){return pdt(pdt(a, b), c);} inline int sqr_M(int a){return pdt(a, a);} inline int pow(int a, int b){ int c = 1; while (b) { if (b&1) MUL(c, a); MUL(a, a), b >>= 1; } return c; } template<class T> inline int pow(T a, int b){ T c(1); while (b) { if (b&1) MUL(c, a); MUL(a, a), b >>= 1; } return c; } inline int _I(int b){ int a = MOD, x1 = 0, x2 = 1, q; while (true){ q = a / b, a %= b; if (!a) return (x2 + MOD) % MOD; DEC(x1, pdt(q, x2)); q = b / a, b %= a; if (!b) return (x1 + MOD) % MOD; DEC(x2, pdt(q, x1)); } } inline void DIV(int &a, int b){MUL(a, _I(b));} inline int qtt(int a, int b){return pdt(a, _I(b));} inline int sum(int a, int b, int MOD){ a += b; if (a >= MOD) a -= MOD; return a; } inline int phi(int n){ int res = n; for (int i=2;sqr(i)<=n;++i) if (!(n%i)){ DEC(res, qtt(res, i)); do{n /= i;} while(!(n%i)); } if (n != 1) DEC(res, qtt(res, n)); return res; } // <<= '9. Comutational Geometry ., struct Po; struct Line; struct Seg; inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;} inline int sgn(DB x, DB y){return sgn(x - y);} inline bool equ(DB x, DB y){return !sgn(x, y);} struct Po{ DB x, y; Po(DB _x = 0, DB _y = 0):x(_x), y(_y){} friend istream& operator >>(istream& in, Po &p){return in >> p.x >> p.y;} friend ostream& operator <<(ostream& out, Po p){return out << "(" << p.x << ", " << p.y << ")";} friend bool operator ==(Po, Po); friend bool operator !=(Po, Po); friend Po operator +(Po, Po); friend Po operator -(Po, Po); friend Po operator *(Po, DB); friend Po operator /(Po, DB); bool operator < (const Po &rhs) const{return sgn(x, rhs.x) < 0 || sgn(x, rhs.x) == 0 && sgn(y, rhs.y) < 0;} Po operator-() const{return Po(-x, -y);} Po& operator +=(Po rhs){x += rhs.x, y += rhs.y; return *this;} Po& operator -=(Po rhs){x -= rhs.x, y -= rhs.y; return *this;} Po& operator *=(DB k){x *= k, y *= k; return *this;} Po& operator /=(DB k){x /= k, y /= k; return *this;} DB length_sqr(){return sqr(x) + sqr(y);} DB length(){return sqrt(length_sqr());} DB atan(){ return atan2(y, x); } void input(){ scanf("%lf %lf", &x, &y); } }; bool operator ==(Po a, Po b){return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;} bool operator !=(Po a, Po b){return sgn(a.x - b.x) != 0 || sgn(a.y - b.y) != 0;} Po operator +(Po a, Po b){return Po(a.x + b.x, a.y + b.y);} Po operator -(Po a, Po b){return Po(a.x - b.x, a.y - b.y);} Po operator *(Po a, DB k){return Po(a.x * k, a.y * k);} Po operator *(DB k, Po a){return a * k;} Po operator /(Po a, DB k){return Po(a.x / k, a.y / k);} struct Line{ Po a, b; Line(Po _a = Po(), Po _b = Po()):a(_a), b(_b){} Line(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){} Line(Seg); friend ostream& operator <<(ostream& out, Line p){return out << p.a << "-" << p.b;} }; struct Seg{ Po a, b; Seg(Po _a = Po(), Po _b = Po()):a(_a), b(_b){} Seg(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){} Seg(Line l); friend ostream& operator <<(ostream& out, Seg p){return out << p.a << "-" << p.b;} DB length(){return (b - a).length();} }; Line::Line(Seg l):a(l.a), b(l.b){} Seg::Seg(Line l):a(l.a), b(l.b){} #define innerProduct dot #define scalarProduct dot #define dotProduct dot #define outerProduct det #define crossProduct det inline DB dot(DB x1, DB y1, DB x2, DB y2){return x1 * x2 + y1 * y2;} inline DB dot(Po a, Po b){return dot(a.x, a.y, b.x, b.y);} inline DB dot(Po p0, Po p1, Po p2){return dot(p1 - p0, p2 - p0);} inline DB dot(Line l1, Line l2){return dot(l1.b - l1.a, l2.b - l2.a);} inline DB det(DB x1, DB y1, DB x2, DB y2){return x1 * y2 - x2 * y1;} inline DB det(Po a, Po b){return det(a.x, a.y, b.x, b.y);} inline DB det(Po p0, Po p1, Po p2){return det(p1 - p0, p2 - p0);} inline DB det(Line l1, Line l2){return det(l1.b - l1.a, l2.b - l2.a);} template<class T1, class T2> inline DB dist(T1 x, T2 y){return sqrt(dist_sqr(x, y));} inline DB dist_sqr(Po a, Po b){return sqr(a.x - b.x) + sqr(a.y - b.y);} inline DB dist_sqr(Po p, Line l){Po v0 = l.b - l.a, v1 = p - l.a; return sqr(fabs(det(v0, v1))) / v0.length_sqr();} inline DB dist_sqr(Po p, Seg l){ Po v0 = l.b - l.a, v1 = p - l.a, v2 = p - l.b; if (sgn(dot(v0, v1)) * sgn(dot(v0, v2)) <= 0) return dist_sqr(p, Line(l)); else return min(v1.length_sqr(), v2.length_sqr()); } inline DB dist_sqr(Line l, Po p){return dist_sqr(p, l);} inline DB dist_sqr(Seg l, Po p){return dist_sqr(p, l);} inline DB dist_sqr(Line l1, Line l2){ if (sgn(det(l1, l2)) != 0) return 0; return dist_sqr(l1.a, l2); } inline DB dist_sqr(Line l1, Seg l2){ Po v0 = l1.b - l1.a, v1 = l2.a - l1.a, v2 = l2.b - l1.a; DB c1 = det(v0, v1), c2 = det(v0, v2); return sgn(c1) != sgn(c2) ? 0 : sqr(min(fabs(c1), fabs(c2))) / v0.length_sqr(); } bool isIntersect(Seg l1, Seg l2){ //if (l1.a == l2.a || l1.a == l2.b || l1.b == l2.a || l1.b == l2.b) return true; return min(l1.a.x, l1.b.x) <= max(l2.a.x, l2.b.x) && min(l2.a.x, l2.b.x) <= max(l1.a.x, l1.b.x) && min(l1.a.y, l1.b.y) <= max(l2.a.y, l2.b.y) && min(l2.a.y, l2.b.y) <= max(l1.a.y, l1.b.y) && sgn( det(l1.a, l2.a, l2.b) ) * sgn( det(l1.b, l2.a, l2.b) ) <= 0 && sgn( det(l2.a, l1.a, l1.b) ) * sgn( det(l2.b, l1.a, l1.b) ) <= 0; } inline DB dist_sqr(Seg l1, Seg l2){ if (isIntersect(l1, l2)) return 0; else return min(dist_sqr(l1.a, l2), dist_sqr(l1.b, l2), dist_sqr(l2.a, l1), dist_sqr(l2.b, l1)); } inline bool isOnExtremePoint(const Po &p, const Seg &l){ return p == l.a || p == l.b; } inline bool isOnseg(const Po &p, const Seg &l){ //if (p == l.a || p == l.b) return false; return sgn(det(p, l.a, l.b)) == 0 && sgn(l.a.x, p.x) * sgn(l.b.x, p.x) <= 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) <= 0; } inline Po intersect(const Line &l1, const Line &l2){ return l1.a + (l1.b - l1.a) * (det(l2.a, l1.a, l2.b) / det(l2, l1)); } // perpendicular foot inline Po intersect(const Po & p, const Line &l){ return intersect(Line(p, p + Po(l.a.y - l.b.y, l.b.x - l.a.x)), l); } inline Po rotate(Po p, DB alpha, Po o = Po()){ p.x -= o.x, p.y -= o .y; return Po(p.x * cos(alpha) - p.y * sin(alpha), p.y * cos(alpha) + p.x * sin(alpha)) + o; } // <<= ' A. Random Event .. inline int rand32(){return (bool(rand() & 1) << 30) | (rand() << 15) + rand();} inline int random32(int l, int r){return rand32() % (r - l + 1) + l;} inline int random(int l, int r){return rand() % (r - l + 1) + l;} int dice(){return rand() % 6;} bool coin(){return rand() % 2;} // <<= ' 0. I/O Accelerator interface ., template<class T> inline void RD(T &x){ //cin >> x; scanf("%d", &x); //char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; } template<class T> inline void OT(const T &x){ //printf("%d\n", x); cout << x << endl; } /* .................................................................................................................................. */ const int N = 495, AN = 17000; Po P[N]; DB A[N][N]; int p[N][N]; VD L; int cp[N], dp[N][AN]; int n; DB area(int _a, int _b, int _c){ //return abs(det(C[0], C[_a]) + det(C[_a], C[_b]) + det(C[_b], C[0])); DB a = dist(P[0], P[_a]), b = dist(P[0], P[_b]), c = dist(P[0], P[_c]); DB p = (a + b + c) / 2; return sqrt(p * (p - a) * (p - b) * (p - c)); } int g(int len, int limit){ if (len <= 1) return 1; int &res = dp[len][limit]; if (res == -1){ if (p[n-len][len/2] < limit){ res = cp[len - 1]; } else { LL buf = 0; for (int i=1;2*i<=len&&p[n-len][i]<limit;++i){ buf += (LL) g(i, limit) * g(len - i, limit); if (buf >= INF_64) buf %= MOD; } buf %= MOD, res = buf, INC(res, res); } } return res; } int f(int a, int b){ return pdt(g(a, p[a][b]), g(b, p[a][b]), g(n-a-b, p[a][b])); } class MaximalTriangle { public: int howMany(int n, int z) { MOD = z, RST(cp), cp[0] = 1 % z; REP_1(i, n){ REP_C(j, (i+1)/2) INC(cp[i], pdt(cp[j], cp[i-1-j])); INC(cp[i], cp[i]); if (i&1) DEC(cp[i], sqr_M(cp[i/2])); } ::n = n; REP(i, n) P[i] = Po(cos(2.0*PI*i/n), sin(2.0*PI*i/n)); CLR(L); FOR(i, 1, n) FOR(j, 1, n-i){ A[i][j] = area(i, j, n - i - j); L.PB(A[i][j]); } SRT(L); L.resize(unique(ALL(L), equ) - L.begin()); RST(p); FOR(i, 1, n) FOR(j, 1, n - i) p[i][j] = lower_bound(ALL(L), A[i][j] - EPS) - L.begin(); int t[] = {(n / 3) % MOD, n % MOD, (LL) 2 * n % MOD}; FLC(dp, -1); int res = 0; REP(a, n) FOR_1_C(b, a, (n - a) / 2){ INC(res, pdt(f(a, b), t[(a != b) + (b != n - a - b)])); } return res; } }; // BEGIN CUT HERE namespace moj_harness { int run_test_case(int); void run_test(int casenum = -1, bool quiet = false) { if (casenum != -1) { if (run_test_case(casenum) == -1 && !quiet) { cerr << "Illegal input! Test case " << casenum << " does not exist." << endl; } return; } int correct = 0, total = 0; for (int i=0;; ++i) { int x = run_test_case(i); if (x == -1) { if (i >= 100) break; continue; } correct += x; ++total; } if (total == 0) { cerr << "No test cases run." << endl; } else if (correct < total) { cerr << "Some cases FAILED (passed " << correct << " of " << total << ")." << endl; } else { cerr << "All " << total << " tests passed!" << endl; } } int verify_case(int casenum, const int &expected, const int &received, clock_t elapsed) { cerr << "Example " << casenum << "... "; string verdict; vector<string> info; char buf[100]; if (elapsed > CLOCKS_PER_SEC / 200) { sprintf(buf, "time %.2fs", elapsed * (1.0/CLOCKS_PER_SEC)); info.push_back(buf); } if (expected == received) { verdict = "PASSED"; } else { verdict = "FAILED"; } cerr << verdict; if (!info.empty()) { cerr << " ("; for (int i=0; i<(int)info.size(); ++i) { if (i > 0) cerr << ", "; cerr << info[i]; } cerr << ")"; } cerr << endl; if (verdict == "FAILED") { cerr << " Expected: " << expected << endl; cerr << " Received: " << received << endl; } return verdict == "PASSED"; } int run_test_case(int casenum) { switch (casenum) { case 0: { int n = 428; int z = 900000005; int expected__ = 180276168; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); } case 1: { int n = 5; int z = 100; int expected__ = 5; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); } case 2: { int n = 6; int z = 1000003; int expected__ = 2; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); } case 3: { int n = 10; int z = 1000000000; int expected__ = 1010; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); } case 4: { int n = 15; int z = 1000000000; int expected__ = 714340; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); } case 5: { int n = 100; int z = 987654321; int expected__ = 308571232; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); } // custom cases /* case 6: { int n = ; int z = ; int expected__ = ; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); }*/ /* case 7: { int n = ; int z = ; int expected__ = ; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); }*/ /* case 8: { int n = ; int z = ; int expected__ = ; clock_t start__ = clock(); int received__ = MaximalTriangle().howMany(n, z); return verify_case(casenum, expected__, received__, clock()-start__); }*/ default: return -1; } } } int main(int argc, char *argv[]) { if (argc == 1) { moj_harness::run_test(); } else { for (int i=1; i<argc; ++i) moj_harness::run_test(atoi(argv[i])); } } // END CUT HERE
External link:
http://apps.topcoder.com/wiki/display/tc/SRM+547
http://community.topcoder.com/stat?c=coder_room_stats&rd=14739&cr=22727863