Brief description:
翻纸盒问题,给定一个 N 个顶点的简单多边形,问沿着 x 轴进行滚动,触碰 T 点时翻滚的角度。
多边形的顶点按照顺时针或逆时针给出,且第一个点是源点,T 点一定在这个多边形的右边,所有点的 y 轴坐标 >= 0。
.. ( N <= 100 ).. .
Analysis:
。。。花了 5 个小时总算 A 掉了这个题。。可见现场赛的时候是根本写不出来的。。
么?。
。。这题的做法并不是很难想。。包括先求凸包、计算旋转用的外角、计算周长。。进行一次第一次翻滚(取模。。)。。
。。都是可以写的。。那么唯一的难点即使临近结束之时。。
。。。。例子。。
(如图所示,。。。目标点在“沙漏”形状的简单多边形的凹角里面。。
这种情况不会出现在初始的输入中,但是仍然可能出现在执行期。。)
。。那么看来后期不能一直用凸包进行操作。。原简单多边形还是要保存的。。
先给出主程序。。
.. . int main() { //freopen("in.txt", "r", stdin); while (scanf("%d", &n) != EOF){ init(), cnt = int((T.x - C[cur].x) / perimeter) - 1; res = 2 * PI * cnt, T.x -= perimeter * cnt, cnt = 0; while (cnt < 2 * nn){ pivot = C[cur], alpha = cnt ? angle[cur] : (C[cur+1] - C[cur]).atan(); if (Roll()) break; T = rotate(T, alpha, pivot), res += alpha, ++cnt; if (++cur == nn) cur = 0; } if (cnt == 2 * nn) OT(no_solution); else OT(res); } } ..
可以看到。。对周长取模之后。。至多再进行 2n 次 Roll() 操作。。
就一定会碰到那个交点(前提是有解。。之所以再进行 2n 次是因为无法很快的找到旋转过程中在最右边的点。。)
。。
(顺便一提。。根据运动的相对性。。 所有对多边形进行的操作。。都转化为对单个 T 点。。进行反向的操作。。)
唯一剩下的这个工作,就是简单多边形和一段弧线求交。。
。。枚举简单多边形的每一条边(。因为这一步的存在现在的复杂度是 O(n2) 的。。。有更好方法么?。。)
( bool Roll() 函数。。 。。其中 alpha 表示这次旋转的最大角度。。beta 表示最小旋转多少度可以到达这个值。。
。。如果求完以后 beta 的值仍然不满足条件。。那么函数返回 false。。。。。。)
那么现在唯一剩下的工作就是。。线段和弧线求交。。
(。。我发现如果线段的延长线同圆心在一条直线上的话。。那么这个问题会非常好写。。。。)
。。。。对于这个一般的情况。。我们发现是一个定比分点的问题。。
。。。。。然后发现这里要解这个三角形。。
。。但是这么复杂的三角形问题。。我显然是不会解的。。。。
。。。。没办法了。。只好看看有没有别的方法。。。再多画几条线。。
(。正确的方法是过源点 O(也就是旋转中心 pivot。。)做线段的垂足 O’。。
。。。。然后 O’ 到 T’ 的方向向量是可以通过图中的红三算出来的。。
这样就完成了。
。。(但是果然还是好复杂好复杂。。。。)。。
/** ` Micro Mezzo Macro Flation -- Overheated Economy ., **/ #include <algorithm> #include <iostream> #include <iomanip> #include <sstream> #include <cstring> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <list> #include <set> #include <map> using namespace std; #define REP(i, n) for (int i=0;i<int(n);++i) #define FOR(i, a, b) for (int i=int(a);i<int(b);++i) #define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) #define REP_1(i, n) for (int i=1;i<=int(n);++i) #define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) #define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) #define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) #define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) #define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) #define REP_N(i, n) for (i=0;i<int(n);++i) #define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) #define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) #define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) #define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) #define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) #define REP_1_N(i, n) for (i=1;i<=int(n);++i) #define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) #define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) #define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i) #define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i) #define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i) #define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i) #define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i) #define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i) #define DO(n) while(n--) #define DO_C(n) int n____ = n; while(n____--) #define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_) #define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_) #define SQZ(i, j, a, b) for (int i=int(a),j=int(b)-1;i<j;++i,--j) #define SQZ_1(i, j, a, b) for (int i=int(a),j=int(b);i<=j;++i,--j) #define REP_2(i, j, n, m) REP(i, n) REP(j, m) #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) #define ALL(A) A.begin(), A.end() #define LLA(A) A.rbegin(), A.rend() #define CPY(A, B) memcpy(A, B, sizeof(A)) #define INS(A, P, B) A.insert(A.begin() + P, B) #define ERS(A, P) A.erase(A.begin() + P) #define BSC(A, X) find(ALL(A), X) // != A.end() #define CTN(T, x) (T.find(x) != T.end()) #define SZ(A) int(A.size()) #define PB push_back #define MP(A, B) make_pair(A, B) #define Rush int T____; RD(T____); DO(T____) #pragma comment(linker, "/STACK:36777216") #pragma GCC optimize ("O2") #define Ruby system("ruby main.rb") #define Haskell system("runghc main.hs") #define Pascal system("fpc main.pas") typedef long long LL; typedef double DB; typedef unsigned UINT; typedef unsigned long long ULL; typedef vector<int> VI; typedef vector<char> VC; typedef vector<string> VS; typedef vector<LL> VL; typedef vector<DB> VD; typedef set<int> SI; typedef set<string> SS; typedef set<LL> SL; typedef set<DB> SD; typedef map<int, int> MII; typedef map<string, int> MSI; typedef map<LL, int> MLI; typedef map<DB, int> MDI; typedef map<int, bool> MIB; typedef map<string, bool> MSB; typedef map<LL, bool> MLB; typedef map<DB, bool> MDB; typedef pair<int, int> PII; typedef pair<int, bool> PIB; typedef vector<PII> VII; typedef vector<VI> VVI; typedef vector<VII> VVII; typedef set<PII> SII; typedef map<PII, int> MPIII; typedef map<PII, bool> MPIIB; /** I/O Accelerator **/ /* ... :" We are I/O Accelerator ... Use us at your own risk ;) ... " .. */ template<class T> inline void RD(T &); template<class T> inline void OT(const T &); inline int RD(){ int x; RD(x); return x;} template<class T> inline T& _RD(T &x){ RD(x); return x;} inline void RC(char &c){scanf(" %c", &c);} inline void RS(char *s){scanf("%s", s);} template<class T0, class T1> inline void RD(T0 &x0, T1 &x1){RD(x0), RD(x1);} template<class T0, class T1, class T2> inline void RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2);} template<class T0, class T1, class T2, class T3> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6);} template<class T0, class T1> inline void OT(T0 &x0, T1 &x1){OT(x0), OT(x1);} template<class T0, class T1, class T2> inline void OT(T0 &x0, T1 &x1, T2 &x2){OT(x0), OT(x1), OT(x2);} template<class T0, class T1, class T2, class T3> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} template<class T> inline void CLR(T &A){A.clear();} template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2){FLC(A0), FLC(A1), FLC(A2);} template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3){FLC(A0), FLC(A1), FLC(A2), FLC(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5), FLC(A6);} template<class T> inline void SRT(T &A){sort(ALL(A));} template<class T, class C> inline void SRT(T &A, C B){sort(ALL(A), B);} /** Add - On **/ const int MOD = 1000000007; const int INF = 0x7fffffff; const DB EPS = 1e-6; const DB OO = 1e15; const DB PI = M_PI; // <<= ` 0. Daily Use ., template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} template<class T> inline void checkMax(T &a,const T b){if (b>a) a=b;} template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} template<class T> inline T sqr(T a){return a*a;} template<class T> inline T cub(T a){return a*a*a;} int Ceil(int x, int y){return (x - 1) / y + 1;} // <<= ` 1. Bitwise Operation ., inline bool _1(int x, int i){return x & 1<<i;} inline int _1(int i){return 1<<i;} inline int _U(int i){return _1(i) - 1;}; inline int count_bits(int x){ x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1); x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2); x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4); x = (x & 0x00ff00ff) + ((x & 0xff00ff00) >> 8); x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16); return x; } template<class T> inline T low_bit(T x) { return x & -x; } template<class T> inline T high_bit(T x) { T p = low_bit(x); while (p != x) x -= p, p = low_bit(x); return p; } // <<= ` 2. Modular Arithmetic Basic ., inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;} inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;} inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;} inline int dff(int a, int b){a -= b; if (a < 0) a += MOD; return a;} inline void MUL(int &a, int b){a = int((LL)a * b % MOD);} inline int pdt(int a, int b){return int((LL)a * b % MOD);} // <<= '9. Comutational Geometry ., struct Po; struct Line; struct Seg; inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;} inline int sgn(DB x, DB y){return sgn(x - y);} struct Po{ DB x, y; Po(DB _x = 0, DB _y = 0):x(_x), y(_y){} friend istream& operator >>(istream& in, Po &p){return in >> p.x >> p.y;} friend ostream& operator <<(ostream& out, Po p){return out << "(" << p.x << ", " << p.y << ")";} friend bool operator ==(Po, Po); friend Po operator +(Po, Po); friend Po operator -(Po, Po); friend Po operator *(Po, DB); friend Po operator /(Po, DB); bool operator < (const Po &rhs) const{return sgn(x, rhs.x) < 0 || sgn(x, rhs.x) == 0 && sgn(y, rhs.y) < 0;} Po& operator +=(Po rhs){x += rhs.x, y += rhs.y;} Po& operator -=(Po rhs){x -= rhs.x, y -= rhs.y;} Po& operator *=(DB k){x *= k, y *= k;} Po& operator /=(DB k){x /= k, y /= k;} DB length_sqr(){return sqr(x) + sqr(y);} DB length(){return sqrt(length_sqr());} DB atan(){ return atan2(y, x); } void input(){ int _x, _y; scanf("%d %d", &_x, &_y); x = _x, y = _y; } }; bool operator ==(Po a, Po b){return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;} Po operator +(Po a, Po b){return Po(a.x + b.x, a.y + b.y);} Po operator -(Po a, Po b){return Po(a.x - b.x, a.y - b.y);} Po operator *(Po a, DB k){return Po(a.x * k, a.y * k);} Po operator /(Po a, DB k){return Po(a.x / k, a.y / k);} struct Line{ Po a, b; Line(Po _a = Po(), Po _b = Po()):a(_a), b(_b){} Line(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){} Line(Seg); }; struct Seg{ Po a, b; Seg(Po _a = Po(), Po _b = Po()):a(_a), b(_b){} Seg(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){} Seg(Line l); DB length(){return (b - a).length();} }; Line::Line(Seg l):a(l.a), b(l.b){} Seg::Seg(Line l):a(l.a), b(l.b){} #define innerProduct dot #define scalarProduct dot #define dotProduct dot #define outerProduct det #define crossProduct det inline DB dot(DB x1, DB y1, DB x2, DB y2){return x1 * x2 + y1 * y2;} inline DB dot(Po a, Po b){return dot(a.x, b.y, b.x, b.y);} inline DB dot(Po p0, Po p1, Po p2){return dot(p1 - p0, p2 - p0);} inline DB dot(Line l1, Line l2){return dot(l1.b - l1.a, l2.b - l2.a);} inline DB det(DB x1, DB y1, DB x2, DB y2){return x1 * y2 - x2 * y1;} inline DB det(Po a, Po b){return det(a.x, a.y, b.x, b.y);} inline DB det(Po p0, Po p1, Po p2){return det(p1 - p0, p2 - p0);} inline DB det(Line l1, Line l2){return det(l1.b - l1.a, l2.b - l2.a);} template<class T1, class T2> inline DB dist(T1 x, T2 y){return sqrt(dist_sqr(x, y));} inline DB dist_sqr(Po a, Po b){return sqr(a.x - b.x) + sqr(a.y - b.y);} inline DB dist_sqr(Po p, Line l){Po v0 = l.b - l.a, v1 = p - l.a; return sqr(fabs(det(v0, v1))) / v0.length_sqr();} inline DB dist_sqr(Po p, Seg l){ Po v0 = l.b - l.a, v1 = p - l.a, v2 = p - l.b; if (sgn(dot(v0, v1)) * sgn(dot(v0, v2)) <= 0) return dist_sqr(p, Line(l)); else return min(v1.length_sqr(), v2.length_sqr()); } inline DB dist_sqr(Line l, Po p){ return dist_sqr(p, l); } inline DB dist_sqr(Line l1, Line l2){ if (sgn(det(l1, l2)) != 0) return 0; return dist_sqr(l1.a, l2); } inline DB dist_sqr(Line l1, Seg l2){ Po v0 = l1.b - l1.a, v1 = l2.a - l1.a, v2 = l2.b - l1.a; DB c1 = det(v0, v1), c2 = det(v0, v2); return sgn(c1) != sgn(c2) ? 0 : sqr(min(fabs(c1), fabs(c2))) / v0.length_sqr(); } inline DB dist_sqr(Seg l, Po p){ return dist_sqr(p, l); } inline DB dist_sqr(Seg l1, Line l2){ return dist_sqr(l2, l1); } bool isIntersect(Seg l1, Seg l2){ //if (l1.a == l2.a || l1.a == l2.b || l1.b == l2.a || l1.b == l2.b) return true; return min(l1.a.x, l1.b.x) <= max(l2.a.x, l2.b.x) && min(l2.a.x, l2.b.x) <= max(l1.a.x, l1.b.x) && min(l1.a.y, l1.b.y) <= max(l2.a.y, l2.b.y) && min(l2.a.y, l2.b.y) <= max(l1.a.y, l1.b.y) && sgn( det(l1.a, l2.a, l2.b) ) * sgn( det(l1.b, l2.a, l2.b) ) <= 0 && sgn( det(l2.a, l1.a, l1.b) ) * sgn( det(l2.b, l1.a, l1.b) ) <= 0; } inline DB dist_sqr(Seg l1, Seg l2){ if (isIntersect(l1, l2)) return 0; else return min(dist_sqr(l1.a, l2), dist_sqr(l1.b, l2), dist_sqr(l2.a, l1), dist_sqr(l2.b, l1)); } inline bool isOnseg(const Po &p, const Seg &l){ return sgn(det(p, l.a, l.b)) == 0 && sgn(l.a.x, p.x) * sgn(l.b.x, p.x) <= 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) <= 0; } inline Po intersect(const Line &l1, const Line &l2){ return l1.a + (l1.b - l1.a) * (det(l2.a, l1.a, l2.b) / det(l2, l1)); } // perpendicular foot inline Po intersect(const Po & p, const Line &l){ return intersect(Line(p, p + Po(l.a.y - l.b.y, l.b.x - l.a.x)), l); } inline Po rotate(Po p, DB alpha, Po o = Po()){ p.x -= o.x, p.y -= o.y; return Po(p.x * cos(alpha) - p.y * sin(alpha), p.y * cos(alpha) + p.x * sin(alpha)) + o; } // <<= ' 0. I/O Accelerator interface ., template<class T> inline void RD(T &x){ //cin >> x; //scanf("%d", &x); char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; } const DB no_solution = -1; int ____Case; template<class T> inline void OT(const T &x){ printf("Case %d: ", ++____Case); if (x == no_solution){ puts("Impossible"); } else { printf("%.2lf\n", x / PI * 180); } } /* .................................................................................................................................. */ const int N = 109; Po P[N], P_[N], C[N], T; DB _, angle[N], perimeter; int cur, cnt; Po pivot; DB alpha, res; int n, nn; #define p0 P_[0] bool cpPolar(const Po &p1, const Po &p2){ int t = sgn(crossProduct(p0, p1, p2)); if (t == 0) return dist_sqr(p0, p1) < dist_sqr(p0, p2); return t == 1; } #define O pivot bool Roll(){ DB rr = (T - O).length_sqr(), o = (T - O).atan(), beta = OO, t; REP(i, n){ Line L = Line(P[i], P[i + 1]); Po O_ = intersect(O, L), D = (P[i+1] - O).length_sqr() > (P[i] - O).length_sqr() ? P[i+1] - P[i] : P[i] - P[i+1]; D /= D.length(), D *= sqrt(rr - dist_sqr(O, O_)); if (isOnseg(O_ + D, L)){ O_ += D, t = (O_ - O).atan() - o; if (t < 0) t += PI * 2; checkMin(beta, t); } } if (sgn(beta, alpha) <= 0){res += beta; return true;} return false; } void init(){ REP(i, n) P[i].input(); P[n] = P[0], T.input(); CPY(P_, P), iter_swap(P_, min_element(P_, P_ + n)), sort(P_ + 1, P_ + n, cpPolar); nn = 0, C[++nn] = P_[0], C[++nn] = P_[1]; FOR(i, 2, n){ while (nn >= 2 && sgn(crossProduct(C[nn-1], C[nn], P_[i])) <= 0) --nn; C[++nn] = P_[i]; } perimeter = 0, C[0] = C[nn]; REP(i, nn){ if (C[i].y == 0) cur = i; angle[i] = (C[i+1] - C[i]).atan(); perimeter += dist(C[i], C[i+1]); } angle[-1] = angle[nn-1]; DWN(i, nn, 0){ angle[i] -= angle[i-1]; if (angle[i] < -PI) angle[i] += PI * 2; else if (angle[i] > PI) angle[i] -= PI * 2; } } int main() { //freopen("in.txt", "r", stdin); while (scanf("%d", &n) != EOF){ init(), cnt = int((T.x - C[cur].x) / perimeter) - 1; res = 2 * PI * cnt, T.x -= perimeter * cnt, cnt = 0; while (cnt < 2 * nn){ pivot = C[cur], alpha = cnt ? angle[cur] : (C[cur+1] - C[cur]).atan(); if (Roll()) break; T = rotate(T, alpha, pivot), res += alpha, ++cnt; if (++cur == nn) cur = 0; } if (cnt == 2 * nn) OT(no_solution); else OT(res); } }
External link:
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3546
Further discussion:
。。。翻滚部分的时间复杂度是可以降低到 O(n) 的。。方法是从支点开始。。沿逆时针寻找第一次变号的位置。 (… sgn(dist(P[i], O) – dist(T, O)).. ) ..
这个部分可以用单调队列维护。。。为此我们需要保存凸包点到原点的映射。。
另外。。用解三角形的方法也是可以组多边形与弧求交的部分的。。但是我现在 WA 了。。
。。。。。。。。。。。